Do Not Trust Build Results at Face Value
— An Empirical Study of 30 Million CPAN Builds

Mahdis Zolfagharinia
MCIS, Polytechnique Montréal
Québec, Canada
Email: mahdis.zolfagharinia@polymtl.ca

Abstract—Continuous Integration (CI) is a cornerstone of
modern quality assurance, providing on-demand builds (com-
pilation and tests) of code changes or software releases. Despite
the myriad of CI tools and frameworks, the basic activity of
interpreting build results is not straightforward, due to not only
the number of builds being performed but also, and especially,
due to the phenomenon of build inflation, according to which
one code change can be built on dozens of different operating
systems, run-time environments and hardware architectures. As
existing work mostly ignored this inflation, this paper performs
a large-scale empirical study of the impact of OS and run-
time environment on build failures on 30 million builds of the
CPAN ecosystem’s CI environment. We observe the evolution of
build failures over time, and investigate the impact of OSes and
environments on build failures. We show that distributions may
fail differently on different OSes and environments and, thus,
that the results of CI require careful filtering and selection to
identify reliable failure data.

I. INTRODUCTION

To enable swift detection of bugs and other quality issues,
continuous integration (CI) has become a main staple in the
quality assurance tool box of companies. A CI environment
such as Jenkins kicks off a build multiple times a day, either for
each patch currently under review, each new commit entering
the version control system or at set times during the day (e.g.,
nightly build), with the aim of notifying developers as soon
as possible of breakage [1], [2]. Such a CI build basically
combines build and test scripts to run compilers and other
tools in the right order, then test the compiled product [3],
[4]. -

This paper focuses on studying the impact of this
“build inflation”, for instance there are many build results
across all OSes/environments, which are not necessarily uni-
form, so each additional build only has diminishing re-
turns. Figure 3 shows this decreasing number of failure,
while number of builds increase. Therefore testing in some
OS/environment,e.g., Darwin in figure 1, would be more
valuable than others,e.g., Freebsd. To perform our analysis
of build inflation and its resulting bias, we empirically study
30 million builds of the Perl Comprehensive Perl Archive
Network (CPAN)’s [5] CI environment, made between 2011
and 2016. These cover more than 12,000 CPAN packages
(“distributions”), 27 OSes and 103 environments to answer
the following four questions:

Bram Adams

MCIS, Polytechnique Montréal
Québec, Canada

Email: bram.adams @polymtl.ca

Yann-Gaél Guéhéneuc
Ptidej Team, Polytechnique Montréal
Québec, Canada
Email: yann-gael.gueheneuc @polymtl.ca

RQI: How do build failures evolve across time?

RQ?2: How do build failures spread across OSes/environments?
RQ3: To what extent do environments impact build failures?
RQA4: To what extent do OSes impact build failures?

Our findings can help researchers as this inflation could
be responsible for bias in build results. The results can also
help practitioners to prioritize the best OS/perl version to test
on, in terms of expected value. As a community interested
in CI (this year’s MSR mining challenge is about CI and
builds'), we lack basic knowledge on the breadth and depth
of the adoption of CI by open-source projects. We need
answers to questions such as: does CI advantages surpass
its disadvantages? Do developers use CI? We show in the
following that CI causes an inflation in the number of builds
and build failures, which hide the reality of builds in noise.
We also show that unnecessary builds could be avoided by
investigating the impact of environments and OSes on build
failures. Our observations provide empirical evidence of the
bias introduced by build inflation and provide insights on
how to deal with this inflation. This, we provide the larger
quantitative observational study to date on build failures and
build inflation. The results of our study form the basis of future
qualitative and quantitative studies on builds and CIL

The remainder of the paper is organized as follows: Sec-
tion II presents important background regarding the CPAN
CI environment and major related work. Section III describes
our observational study design, while Section IV presents
our observations, followed by a discussion of our results in
Section V. Section VI focused on threats to validity. Finally,
Section VII concludes with insights and future work.

II. BACKGROUND
A. CPAN

Overview: This section provides an overview of the soft-
ware ecosystem whose build results we are studying in this
paper, i.e., the Comprehensive Perl Archive Network (CPAN).
Similar to Maven and npm for Java and Node.js, CPAN is a
ecosystem of modules (APIs/libraries) for the Perl program-
ming language. It contains more than 255,000 Perl modules
packaged into 39,000 distributions, i.e., packages that combine

Uhttp://2017.msrconf.org/#/challenge

CPAN Testers Matrix: List-Objects-Types 0.004002

Distribution (e.g. DBI, CPAN-Reporter, YAML-Syck): Submit
CPAN User ID (eg. TMB, JH, ANDK): || submt

You can ciick on the matrix cells or row/column headers to get the lst of corresponding reports.

i
&

cygwin | darwin | dragonfly | freebsd | openbsd | solaris

ol

Al

s (e P e P S g L s s e
S
‘s'
g
=
‘r.
Ex
2
A
@

Fig. 1. Example of CPAN build report summary. A vertical ellipse represents
an “environment build vector” (RQ3), while a horizontal ellipse represents an
“OS build vector” (RQ4).

one or more modules with their documentation, tests, build and
installation scripts. Each distribution can have one or more
versions. To simplify terminology in the following, we will
refer to a distribution of a set of modules as a “dist” and to a
distribution version as a “distversion”.

Build Reports: CPAN implements its own continuous
integration system, which builds and tests any new beta or
official version of a dist on a variety of operating systems (e.g.,
Windows vs. Linux) and run-time environments (e.g., Perl
version 5.8 vs. 5.19). If successful, the new distversion can be
made available to CPAN users. Unlike TravisCI and Jenkins,
but similar to Maven and npm, CPAN’s CI does not work at
commit-level, but at release-level. Since CPAN depends on a
mixture of own build servers and build machines owned and
hosted by volunteering CPAN members, distversions are not
guaranteed to be built and tested on every OS and environment
version (cf. white cells in Figure 1).

As Perl is interpreted, build scripts typically process or
transform scripts and data instead of mere compilation. The
test scripts then allow to verify that the modules in the dist
are working correctly on a given OS and environment. For
each build (we will refer to the execution of build and test
scripts for a given OS and environment as “build”), CPAN
generates a build report and all reports for a given version
of a dist are summarized into an overview report, as shown
in Figure 1. This Figure shows the summary of build results
for version 0.004002 of the “List-Objects-Types” dist for (left
column) Perl environments 5.8.8 to 5.19.3, and OSes (top row)
CygWin to Solaris. Red cells indicate that all builds for a
combination of OS and Perl environment failed, green cells
show that all were successful, red/green cells indicate that
some builds failed, and orange cells represent unknown results
(e.g., build or tests were interrupted).

Rest API: CPAN provides a RESTful API [6] and a Web
interface [5] to create complex queries on all publicly available
modules and dists in CPAN. Furthermore, the whole history

of CPAN and all of its modules and dists is accessible via the
GitPAN project?>. These data sources allow to conveniently
access CPAN for analysis, providing access to not only build
results, but also module meta-data, such as modules names,
versions, dependencies, and other helpful information:

o GUID: a unique global identifier that identifies each dist.
o CSSPATCH: a value (pat) or (unp) indicating if this
module was tested with a patched version of Perl or not.
e CSSPERL: a value (rel or dev) indicating whether a
release or development version of Perl was used to test.

B. Related Work

There exists previous work related to build, build failures,
and CPAN or other ecosystems. We summarize now the studies
most relevant to our own study.

Denny et al. [7] investigated compile errors in short pieces
of Java code and how students fixed these errors. They showed
that 48% of the builds failed due to compilation errors.
Similarly, Dyke [8] assessed the frequency of compile errors
by tracking Eclipse IDE usage with novice programmers.

Suvorov et al. [9] studied two popular open-source projects,
Linux and KDE, and found that the migration from one build
system to another might fail due to missing features. Adams
et al. [3], [10] analyzed the changes to the Linux kernel build
system and reported that the build system grew and had to
frequently be maintained. Mclntosh et al. [11] replicated the
same study on the ANT build system. We complement these
studies with our predictive model of build failures for the build
system of CPAN.

Other CI systems similar to CPAN are Jenkins, Hudson,
Bamboo, and TeamCity [12]. Stahle and Bosch [13] surveyed
CI practices and build failures in CI systems. They observed
that test failures during builds are sometimes accepted by
developers because developers known that these particular
failures will be fixed later [14]. We complement this study
that is showing the impact of OSes and environments on build
failures within CPAN particular unnamed CI system.”

Seo et al. [4] reported on a case study performed at
Google, in which they assessed 26.6 million builds in C and
Java. They showed that there exist multiple patterns of build
failures and focused on compilation problems to conclude that
dependencies are the main source of compilation errors, that
the time to fix these errors vary widely, and that developers
need more, different tools support. We complement this study
with a larger-scale study of 68.9 millions builds of CPAN.

Vasilescu et al. [15] conducted an empirical study about
CI usage on 246 projects from GitHub. They showed that CI
significantly improves productivity of GitHub teams. However,
despite providing evidence on the benefits of CI, they do not
provide any detailed information about CI usage. We provide
evidence supporting Seo et al. [4] on the inflation of the
number of builds.

Hilton et al. [16] assessed 34,544 open-source projects from
GitHub, 40% of which use CI. They analyzed approximately

Zhttps://github.com/gitpan

1.5 million builds from Travis CI to understand how and
why developers use CI. They found evidence that CI can
help projects to release regularly. Leppanen et al. [17] also
reported more frequent releases as a perceived benefits of CI,
by interviewing developers from 15 companies. Two other
works [18], [19] have performed case studies on the use of
CI and found positive impact of CI. This growing usage of CI
makes it important to perform a larger study of CI and builds.

The API of an ecosystem is an important factor of de-
velopment costs [20]. Previous work studied API for various
purposes: (1) to recommend relevant API to developers during
development and—or during changes, typically when upgrading
the dependencies of one module to newer versions of other
modules [21], and (2) to migrate API, in particular in the
context of services [22]. We refer the interested reader to a
previous article summarizing this work [23]. We summarize
here only two relevant works related to API and build systems.

Wau et al. [23] followed up on this first study by analyzing
changes in 22 releases of the Apache and Eclipse frameworks
and their client programs. They observed the kind of API
changes in the frameworks impacting the clients and classified
API changes and API usages. They suggested analyses and
tools to apply on frameworks and their client programs to
identify API usages and reduce the impact of API changes.

We provide evidence that CI is a sane practice to identify
and mitigate API changes that can occur in modules, OSes,
and environments but also that build failures must be analyzed
carefully in function of OSes and environments and in function
of time.”

III. OBSERVATIONAL STUDY DESIGN

We now describe the design of our observational study. For
the sake of locality, we present the research questions, their
motivations, and their results in the next section.

A. Study Object

The object of our study is the impact of OSes and environ-
ments on build results to analyze the phenomenon of “build
inflation”, where an excessive number of builds on heteroge-
neous combinations of OSes and environments can introduce
bias in build results. Such bias makes it difficult to interpret
build results (and hence detect bugs), and should be taken
into consideration by practitioners and researchers analyzing
build results. In certain cases, one might even consider to elide
(combinations of) OSes and environments from the CI server
if those do not contribute useful information.

B. Study Subject

We choose CPAN to study the impact of OS and environ-
ments on build failures because CPAN [5] provides the results
of the automated builds of all Perl dists and distversions on
dozens of OSes and run-time environments, hence it provides
a large and rich data set. Moreover, CPAN has a long history
although it provides build data only at the release level. We
will study data at the commit level, as provided by Travis CI,
in future work.

Using the data sources mentioned in Section II-A, we mined
the build logs and meta-data of all distversions. Build logs
contain the results of all CPAN builds, including the com-
mands executed, build result (failed or succeeded) and the error
messages generated by the build or test scripts. The META.yml
meta-data files contain a dist’s name, version, dependencies
and other dist-related information (e.g., supported OS/Perl
version), and author. Using the dist build logs and meta-data as
the main data source for our observational study, we obtained
a data set of 16 years of build results for 39,000 dists, 27 OSes
and 103 (Perl) environments.

C. Study Sample

First, we studied the CPAN build meta-data of 69.8 million
builds over the full period of 16 years, between January 2000
and August 2016. We found that most builds were performed
between 2011 and 2016. Although, for each OS, builds were
performed on different OS versions and architectures, 10 OSes
and 13 Perl environments stood out. In particular, each of these
10 OSes had more than one million builds, while each of these
13 environments had more than 800,000 builds. To reduce time
and (to some degree) simplify our analysis, we filtered out the
other OSes and Perl environments, yielding a data set of 62.8
million builds on 10 OSes and 13 environments (Perl 5.8 to
5.21, excluding 5.09) for a period of about 5.5 years between
January 2011 to June 2016. Although we investigate 13 Perl
major versions, e.g., 5.8, it includes 103 Perl minor version,
e.g., 5.8.8. Therefore, results of a major version includes the
results of all minor versions. This data set included dists with
only one build, as well as dists with thousands of builds. For
example, 13,522 dists have more than 1,000 builds while 967
dists have less than 3 builds. Unfortunately, not all builds have
build result data available, and no reliable conclusions can be
made for dists with too few builds or too few versions, while
at the same time modules with too many builds or versions
might not be representative either. For this reason, we filtered
out builds without corresponding data, we determined lower
and upper thresholds for the number of builds and number
of versions, and filtered out modules below or above those
thresholds, respectively.

Figure 2 illustrates the distribution of the median number
of builds and the number of versions across all CPAN dists in
our full data set (the number of dists within each quadrant
is shown as well). Black lines show the lower and upper
thresholds that we determined for the median number of
builds and number of versions for each dist. First of all, by
looking at the data distribution, we filtered out CPAN dists
with less than 10 build results and less than 5 versions. Then,
to determine the upper thresholds for filtering outliers, we used
the following formula [24] based on the inter-quartile range:
ut = (uq — lq) * 1.5 + ug. Here, lq and uq are the 25th and
75th percentiles, while ut is the upper threshold.

Of the nine quadrants shown in Figure 2, only the central
one is used in our study. After removing 849,638 builds
without data and filtering out the other quadrant data, we
obtained a data set of 12,584 CPAN dists with about 30 million

Number of
131 1,216 2 Dists

500

. 1000
. 1500

2240 12,584 17

#versions in a distribution

3,398 17415 1835

10° 10' 10? 10° 10*
Median # Builds in a distribution

Fig. 2. Distribution of the number of builds and versions across CPAN dists.
This hexbin plot summarizes where the majority of the data can be found
(darker cells), where a cell represents the number of CPAN dists with a given
median number of builds (x-axis) and number of versions (y-axis). The black
lines correspond to the thresholds used to filter the data, dividing the data
into 9 quadrants. For each quadrant, the number of CPAN dists within it is
mentioned on the plot. The central quadrant contains the final data set.

builds. Including other quadrants would increase our data set
size, but might introduce noise in the form of outliers.

IV. OBSERVATIONAL STUDY RESULTS

We now present the motivation, approach and results of the
four observational research questions, RQ1 to RQ4.

RQI: How do build failures evolve across time?

Motivation. This initial research question aims at under-
standing how often builds fail and whether the ratio of failing
builds is a constant value or fluctuates across time. So we
investigate build inflation in terms of number of builds. The
former has been looked at by recent studies, for example Beller
et al. [1] found a median of 2.9% of Java builds and a 12.7%
of Ruby builds in TravisCI to be failing, while Seo et al. even
recorded failure ratios of 37.4% and 29.7% for C++ and Java
builds at Google [4]. Unfortunately, apart from these lump
numbers, not much more is known about the build failure ratio
of projects, for example about how this ratio evolves over time.
Furthermore, all existing CI studies have targeted commit-level
builds and tests, while CPAN is a package release-level build
environment typical for software ecosystems.

Approach. In order to study the ratio of build failure in our
build report data set, we consider all UNKNOWN build results
(orange cells in Figure 1) as a failure. For each CPAN dist in
the data set of 30 million builds, we then compute the ratio of

39.81 -

25.12-

15.85 -

YFailure

SIS JEB LD IS IS IS IS IS SN JrS 3
5> 5> 5> 5> 5> 5> N 5 5> 5> 5>
ST ST ST ST S S ST ST

Fig. 3. Distribution of failure ratio in six-month periods. The linear regression
line shows the corresponding trend of the ratio over the six studied years.

build failures as #buildf ailures/#builds. We then aggregate
this data per period of six months to obtain the evolution of
build failure ratio across time. Note that we do not distinguish
between OSes and environments in this RQ.

Findings. The median build failure ratio decreases across
time from 17.7% in 2011 to 6.3% in 2016.

Figure 3 shows the distribution of failure ratios across all
builds of all CPAN dists in the studied period of 6 years. From
2010 to 2014, each year two Perl versions were released, so we
investigated the evolution of failure in period of six months.
From 2011 to 2013, the median failure ratio in the first half
of a year is higher than that of the second half of the year, yet
from 2014 on this trend is reversed. However, as the regression
line in Figure 3 shows, the overall build failure ratio has a
strong decreasing trend between 2011 and 2016, especially
when taking into account the logarithmic scale used in the
figure. This decreasing ratio might be due to several reasons,
for example less builds being performed across time or less
releases being made for dists. In the following, we explore
these two hypotheses.

Until the first half of 2015, each year more builds are
being made, from one (2011) to several (2016) million.
Table I shows the number of builds per period of six months.
We observe that, even though ever more builds are executed,
they seem more successful over time, i.e., there is an inverse
correlation between numbers of builds and build failures. It
is not clear why the second half of 2015 and first half of
2016 show a decreasing number of builds, however these
observations might explain the plateau (instead of decrease)
of median values for the rightmost boxplots in Figure 3.

The average number of builds per distversion shows a
three-fold increase from 44.7 to 412.9 across time, although
there are some fluctuations from the second half of 2014 on
(2014-B). To understand if the decreasing build failure ratio
is due to a drop in the number of releases being made over
time, we counted the number of releases of dists in each six
month period. The average number of builds per release in
Table I shows an increasing trend, growing from 44.7 in the
first six months of 2011 to 501.7 in the first half of 2015
(with a slight dip end of 2014), after which the average ratio

TABLE I
NUMBER OF BUILDS, DISTVERSIONS AND AVERAGE NUMBER OF BUILDS PER DISTVERSION IN EACH PERIOD OF SIX MONTHS BETWEEN JANUARY 2011
AND JUNE 2016.

2011-A 2011-B 2012-A 2012-B 2013-A 2013-B 2014-A 2014-B 2015-A 2015-B 2016-A
Number of Builds 626 946K 1,860K 2,404K 3,021K 3,482K 3,625K 4,082K 4,827K 3,394K 2,891K
Number of Distversions 14 7,185 8,085 8,338 10,443 9,387 9,549 11,682 9,621 7,829 7003
#builds / #releases 44.7 131.7 230 288 289.2 371 379.6 349.5 501.7 433.5 412.9
drops, but still remains higher than in 2014. The latter can be
explained as follows: although the number of builds dropped
from the second half of 2015 on, the number of releases did
not drop at the same rate. 3
Overall, the steady drop in build failure ratio can (at least S 7
partially) be explained by a strong increase in number of
builds per release, i.e., strong increases in the number of § .
builds and the number of releases per CPAN dist. While an 8
increasing number of releases is typical for today’s release g 8 - e
engineering strategies [25], the increasing number of builds ! ‘
cannot be explained intuitively. The next research question - A E
helps understand this build inflation by considering the impact - é
of different OSes and environments on builds. T
“ - o
RQI: The median build failure ratio decreases super- Bu‘”d Enviro‘nmem P,at;mm

linearly across time, while the number of builds per
distversion sees a 10-fold inflation.

RQ?2: How do build failures spread across OSes/environments?

Motivation. Build inflation seems to correspond to differ-
ences/similarities in OSes/environments, which can identify
clusters of Perl versions/OSes with different failure ratio and
value. To explain the decrease of the build failure ratio ob-
served in RQ1, our hypothesis is that a given new distversion
is built multiple times in such a way that most of these
builds succeed, while only few fail. One major reason for
such build inflation is the need to build and test a release on
different versions of the OS and Perl environment. Although
each OS and Perl environment of course can show deviating
behaviour (which is why multiple builds are performed in the
first place), they are essentially building and testing the same
features. Hence, feature-related bugs would be expected to
trigger across all OSes and environments, inflating the number
of build failures due to such bugs. OS- or environment-specific
problems would only be reported once for the problematic
OS or environment. This deviation might not only explain our
findings for RQI1, but also lead to bias in build results that
needs to be addressed to avoid incorrect conclusions.

Approach. For each build, we extracted build log data
about the OSes and environments used during the build, then
calculated build failure ratios per OS or environment type.
For the reasons outlined in RQI1, we removed builds with
unspecified status. Furthermore, as any CPAN community
member can volunteer a machine for CPAN builds, a wide
variety of hardware architectures and OS/environment versions
is being used. To make our analysis feasible, we did not
distinguish between the 573 different hardware architectures

Fig. 4. Distribution of the number of builds per CPAN dist, as well as of the
number of OSes and environments on which these dists’ builds took place.

in our data set, but treated them as equal. The analysis of the
impact of hardware architecture is left as future work.

Findings. The analyzed CPAN distversions have a me-
dian of 179 builds, which take place on a median of 22
environments and 7 OSes. Figure 4 shows the distribution of
the number of builds, OSes, and environments across all dists.
While the numbers of OSes is more or less stable around 7,
the number of Perl environments to test is much higher, while
the total number of builds for a dist correlates with the product
of both.

Through a manual analysis of the CPAN data, we observed
that, when a new version of a dist is released, it should be built
and tested on most of the supported OSes and environments
to check if the new distversion is backwards compatible
with their application programming interface (API) [26]. Con-
versely, when a new OS or environment becomes available,
most of the existing distversions that are not yet deprecated
are rebuilt, which explains the inflation of the number of builds
over time found in RQI, but not yet the decrease of the build
failure ratio.

Not every environment yields equally reliable build
results. Figure 5 illustrates the evolution of build failures
from Perl version 5.8 (released in 2002) until 5.21 (2015).
Environments (Perl versions) are shown on the X axis, ordered
by release date [27], while the Y axis shows the build failure
ratio (blue; right axis) and the percentage out of all builds

Build Ratio Failure Ratio

0.20 0.20

0.15 A 0.15

0.10 0.10

0.05 \/ V \/ \ 0.05

0.00 T T 0.00
S

T T T T T T T T T T
SR SR, VR, " R ST - S W S ST PR
T TSP o

Fig. 5. Distribution of the ratio of all builds performed on a given environment
(black y-axis), and the proportion of those builds failing (blue y-axis).

Build Ratio Failure Ratio
0.4 0.4
0.3 0.3
0.2 0.2
. /\\ .
0.0 T T T T T T T T T T 0.0

& > > > < R v <& >

_\\(\o o 5 (\Qe\ % {§ 0\,2;\ & & &

<& ¥ S S“‘\J\@ &) &$) -S\.\\%\
s &

Fig. 6. Distribution of the ratio of all builds performed on a given OS (black
y-axis), and the proportion of those builds failing (blue y-axis).

performed on a given Perl version (black; left axis). The jagged
trend of the black line (percentage of builds) is surprising,
suggesting that odd releases see substantially less builds than
even ones.

Closer analysis showed that Perl uses a specific semantic
versioning approach [27] where even release numbers, like 5.8
and 5.10, are official production releases (with maintenance
releases, such as 5.12.1 and 5.12.2 mainly for bug fixes) and
odd release numbers, like 5.11 and 5.13, are development
releases. Hence, development releases are used less for builds
and have less reliable build results. In particular, versions 5.19
and 5.21 were less failure-prone than their stable successor,
while other odd versions were more failure-prone. Further-
more, some builds have been performed on older environments

%Unsupported OS
@
g

Fig. 7. For a given OS, the distribution across CPAN distversions of the
percentage of environments for which no builds have been performed.

but there was not enough build data to study these in details.

The most failure-prone build OSes are Windows (%18),
Cygwin (%14), and Solaris (%12). Figure 6 shows the
percentage of builds and failing builds for different OSes.
It shows a clear difference between BSDs/Linux on the one
hand and Windows/Cygwin/Solaris on the other hand. The
former cluster of OSes has a substantially larger numbers of
builds than the latter cluster, while the percentage of failures
is lower. Hence, similar to environments, the build results on
some OSes are less reliable than others, because they might
just indicate a lower popularity of those OSes in terms of
builds and development.For some OSes like MidnightBSD or
Cygwin, we have very few number of builds. Therefore, we
get results based on few amount of data, so it might not be
as reliable as the results for Linux with the huge number of
builds. Finally, the average and median numbers of OSes on
which each CPAN dist is built is 7. Note that this number
excludes the OSes that were filtered out in Section III-C due
to very low number of builds.

The fact that some OSes are more failure-prone and less
popular amongst developers than others can also be observed
when measuring the number of times when no build is per-
formed for a distversion on a given combination of Perl version
and OS. These cases correspond to the empty cells in Figure 1.
The resulting distribution of the percentages of missing builds
across CPAN distversions for each OS is shown in Figure 7.
We can observe how the most incomplete OSes correspond
to those with the most build failures in Figure 6. Therefore,
anyone interested in studying build results for CPAN should
not blindly trust the results for the least supported OSes, such
as MidnightBSD, Cygwin, and Windows, because there are

too few builds to be reliable and meaningful.

RQ2: The analyzed distversions are built a median
of 179 times on a median of 22 environments and 7
OSes, yet not every OS and environment yields equally
reliable build results.

RQ3: To what extent do environments impact build failures?

Motivation. In RQ2, we analyzed the impact of OSes
and environments on the number of builds and build failure
ratio to better understand the increase of the number of
builds. Although we find empirical evidence of build inflation
due to repeated builds on different combinations of OS and
environment, we could not yet explain why the ratio of build
failures has been decreasing over time, as seen in RQI1. We
suspect that build failures specific to one environment version
will only register as one build failure, while builds of an
abandoned distversion will fail on all environments. Similarly,
OS-specific bugs will register less build failures than bugs
in OS-independent code. Not all such failures are equally
valuable to analyze or focus on. Therefore, the next two
research questions study the impact of environment- (RQ3)
and OS-specific (RQ4) build failures.

Lehman’s 7th law of software evolution states that “the qual-
ity of an E-type system will appear to be declining unless it is
rigorously maintained and adapted to operational environment
changes [28]. As each CPAN distversion is immutable (any
changes will generate a new distversion rather than updating
an older one), this means that once a distversion starts to
fail on a given Perl version, it is expected to keep on failing
on future versions, unless the Perl developers are able to fix
the Perl APIs. Hence, this RQ aims to understand how often
environments break the build and to what degree a failing build
can recover again or is doomed to keep on failing.

Approach. For each distversion and OS, we consider the
chronological sequence of build results across environments as
binary vectors (“environment build vectors”), where a 0 marks
a failure and a 1 a successful build. Environment versions with
missing builds are ignored. This means that the environment
build vector for Cygwin in Figure 1 is [1,1,1], as white cells
(missing builds) are ignored. We then analyze the four possible
patterns of build failure evolution and study these patterns
across our environment build vectors to identify environments
that are more failure-prone and tend to keep on failing.

These four patterns are summarized in Table II. For instance,
in Figure 1 OpenBSD’s failure pattern is 0-0, since version
0.004002 of the List-Objects-Types dist started out and ended
up failing on multiple Perl versions, with some successful
builds in the middle (Perl versions 5.14.4, 5.16.0, and 5.16.2).
Similarly, the pattern for Cygwin is 1-1 (missing builds are
ignored), while that for Linux is 0-1, with some fluctuations
in the middle.

Since for a given OS and Perl version some builds could
be successful while others failed (cells colored partially red
and partially green in Figure 1), we used majority vote to
summarize these build results into one 0 or 1 value for use

TABLE II
TOTAL PERCENTAGE OF OCCURRENCES OF THE FOUR DIFFERENT BUILD
FAILURE EVOLUTION PATTERNS, ACROSS ALL OSES. “PURE” REFERS TO
OCCURRENCES OF THE PATTERNS WITHOUT FLUCTUATION (E.G., 111),
WHILE “NOISY” REFERS TO OCCURRENCES WITH FLUCTUATION (E.G.,
101).

Description

Mostly Succeed
Mostly Fail
Eventually Fail
Eventually Succeed

B 1-1 0-0 1-0 0-1

Fig. 8. Percentages of the four build failure evolution patterns for the Linux
OS. The blue bars represent occurrences of the pure patterns (no fluctuation)
while gray bars are noisy occurrences (including fluctuations).

Pattern Name Pure Noisy

1+ (0+ 1+)* -1 77% 3%
0+ (1+ 0+)* 0-0 6% 1%

1+ (0+ 1+)* O+ 1-0 3% 1%
0+ (1+ 0+)* 1+ 0-1 8% 1%

1.00

0.50

0.10 0.20

Patterns Ratio

0.05

0.02

0.01

in the environment build vector. As soon as 50% or more of
the builds for a given OS and Perl version failed, the Perl
environment is said to be failure-prone (0 in the vector).

Findings. For 77% of the environment build vectors,
builds succeed across all Perl versions, for 12% the builds
eventually succeed towards the most recent Perl versions,
and for the remaining 11% the builds eventually fail or
never succeeded at all across the Perl versions. Figure 8
shows the percentage of environment build vectors matching
each pattern in Linux. Blue bars show the percentage of “pure”
matches, i.e., matches that do not include the optional part
(between parentheses) of the patterns in Table II. The blue
bar for pattern 1-1 represents environments in which builds
always succeed. On the other hand, gray bars match the full
patterns, including the optional fluctuations from O to 1 or 1
to 0, where the APIs of the Perl environments temporarily
behaved differently than before.

Our observation provides evidence for Lehman’s 7th law of
software evolution, in the sense that for 12% of the analyzed
tuples (3% noisy for 1-1, 8% pure for 0-1 and 1% noisy for
0-1) changes to newer environment versions have been able to
fix previous build failures. These correspond to cases where an

API is removed from a Perl version before being added again,
or where the implementation of a given API changed behavior.
For example, in dist version “Any-Template-ProcessDir 0.05”,
Linux follows the 1-1 pattern: although it breaks in Perl
version 5.13, it succeeds again from Perl version 5.14 onward.

On the other hand, 11% of the environment build vectors
ended up failing in the most recent Perl versions and were
unable to recover, or never succeeded at all (0-O and 1-0
patterns). To better understand these cases, we counted the
number of trailing zeroes in this vector as a measure of the
time (in terms of number of Perl versions) builds have been
broken for a given OS. After normalizing for the number
of Perl versions on which builds were made, we found that
0-0 and 1-0 environment build vectors for Linux, Freebsd
and Openbsd have been broken for the shortest amount of
time (trailing build failues account for 20% of the builds),
while Cygwin environment build vectors have been broken
the longest (50% of all builds). Windows, Darwin, Solaris, and
Gnukfreebsd are in between those extremes (33% of builds).

RQ3: 11% of the build vectors where the build starts
to fail will never succeed again, while for 12%
environment-specific failures occurred that eventually
were resolved.

RQ4: To what extent do OSes impact build failures?

Motivation. Although every new run on a new platform
can bring new information, the amount of test results across
environments and OSes is not homogeneously distributed,
which makes some failures to have more weight than others.
Except for a brief mention of different build environments in
TravisCI [1], related work has not yet studied the impact of OS
type on build results. Similar to the idea of build failures being
specific to certain environment versions, this RQ analyzes the
degree to which build failures are specific to certain OSes.
Especially if one OS is less popular than others, it might
have seen less testing or some features might not have been
ported over, causing test scripts to fail. Such failures would
receive less weight in the build results than builds failing
consistently across all OSes. Hence, here we are interested
in measuring whether certain OSes are indeed more failure-
prone than others.Moreover, if build results of specific OSes
are similar(BSDs), then we have the choice of testing only one
of them for each distversion/Perl version.

Approach. To determine the consistency with which a build
fails across all OSes, we build OS build vector. Instead of
summarizing build results across all environment for a given
OS (environment build vectors), an OS build vector does the
inverse, i.e., summarizing build results of a distversion across
all OSes for a given Perl version. Again, a 0 value indicates
build failure, while a 1 indicates build success.

In contrast to RQ3, RQ4 does not study chronological
differences in build results, but rather how consistent builds
fail across OSes. Since it is easier to have consistent build
failures when a build is only done on 3 or 4 OSes rather than
on 10, we split up our analysis across OS build vectors of

different lengths, from 3 up to 10. For this, we cluster the
vectors into separate sets C;, as follows:

B = {OS build vectors across all distversions} 0
Ci={beB|b=1i},¥i:3<i<10

Ci={peci| Ti_yb=ioro}
C;
cr

3

)

cM
G

fpecilo<xi b <3}
{pecili<siib<i}

In other words, for a given vector length ¢ from 3 to 10,
the set C; is the union of the set of vectors that consistently
failed or succeeded (CY), the set of vectors where a majority
of OSes had a failing build (C) and the set of vectors where
a minority of OSes had a failing build (C}™). The former two
sets give a high weight to build failures, since most, if not
all, of the OSes fail to build, while the latter set consists of
build failure anomalies, since few OSes have a different build
outcome than the majority of the OSes. (We do not distinguish
between sets of OSes (e.g., {CygWin, Windows, Linux} vs.
{Darwin, Solaris, NetBSD}), only between lengths of vectors.)

Table III shows the percentage of vectors with inconsistent
builds, as well as how often those are caused by a minority
of failing builds. If, for a given vector, a minority of m OSes
has a failing build, this counts as % for each of the OSes. The
more OSes fail together, the lower the weight we assign, as
such build failures are less tied to one specific OS.

Findings. A median of 13.5% of OS build vectors
fails inconsistently. Table III shows how the percentage of
inconsistently failing build vectors varies from 9 (N=10) to 16
(IN=6 or 7). Such build failures are specific to certain OSes.
On the other hand, a median of 86.5% of build vectors either
had no failed build, or consistently failed on all OSes. The
latter build failures are purely feature- or logic-related.

Across all build vector lengths, a median of 71% of OS
build vectors with inconsistent build failures have only a
minority of failing OSes. Windows (30%), Linux (7%) and
Solaris (7%) figure the most amongst the OS minority that
is failing. Windows is the source of most of the minority
inconsistencies, which is likely due to its low popularity
amongst CPAN developers (see RQ2). Linux causes more
inconsistencies when being built with a small number of other
OSes (small V), but is surpassed by Windows (and Cygwin) in
larger sets of OSes (large V). Midnightbsd and Gnukfreebsd
are the least inconsistent OSes, because they typically fail
together with the other BSD OSes and Linux: they no longer
belong to a minority but make up the majority of OSes.

TABLE III
PERCENTAGE OF VECTORS IN C; THAT FAILS INCONSISTENTLY, AS WELL AS THE PERCENTAGE OF THOSE VECTORS FOR WHICH A MINORITY OF OSES IS
FAILING (C™). THE LATTER PERCENTAGE IS THEN BROKEN DOWN ACROSS ALL OSES THAT WE STUDIED (I.E., THEY SUM UP TO THE PERCENTAGE IN
THE THIRD COLUMN).

N %CY %CT Windows Linux Darwin Solaris Freebsd Openbsd Netbsd Cygwin Gnukfreebsd Midnightbsd
(out of C;) (out of C¥') % % % % % % % % % %
3 10 61 13 15 3 4 11 6 5 2 2 0
4 12 50 13 11 3 5 7 4 4 1 2 0
5 14 67 22 11 6 6 7 5 5 2 2 1
6 16 65 27 8 6 6 5 4 4 3 1 1
7 16 75 33 6 8 8 4 4 4 5 2 1
8 14 81 38 4 9 8 2 4 4 7 3 2
9 13 90 44 3 10 8 1 3 3 13 3 2
10 9 94 50 2 6 8 0 1 2 21 2 2
Median 13.5 71 30 7 6 7 4.5 4 4 4 2 1

RQ4: A median of 13.5% of OS build vectors fails
inconsistently, with a median of 71% of those having
only a minority of OSes failing. Windows (30%) and
to some extent Linux/Solaris (7%) figure the most
amongst the failing OS minority.

V. DISCUSSION

After answering RQ1 to RQ4, we have a better understand-
ing of the frequency of builds and build failures, and the
distribution of these failures across OSes and environments.
In particular, we aimed to understand why, despite an inflation
of builds across time, the percentage of build failures keeps
on decreasing. Here we want to validate to what degree the
observations that we made, in particular knowledge about build
OS and environment and their impact on build inflation, are
able to explain the presence of build failures. Any unexplained
failures are due to other factors, such as the source, logic
problems, etc.

To do this, we build an explanatory classification model
with build failure as dependent variable and as independent
variables the OS and environment used for a given build. We
use random forest classifiers for our models, which builds an
ensemble of decision trees that are used together to classify a
given build instance [29]. We use 10-fold cross validation to
evaluate the stability of the explanatory models, then calculate
the area under the ROC curve (AUC) to understand how much
better the models are than random guessing (AUC>>0.5).
Furthermore, we calculate what percentage of build failures
is classified correctly as a build failure (true positive recall)
and what percentage of successful builds is classified as such
(true negative recall). The higher these numbers, the better OS
and environment knowledge is able to explain build failures.

We build models for different dists. Initially, we chose
dists with more than 200 builds, having a failure percentage
between 20% to 80%. Thus, from 39,000 dists, we kept
12,584, out of which we kept 3,949 dists, so that we have
enough builds to get a rational result from a random forest
but we can also apply cross validation.

To have enough data and avoid having thousands of small
models, we then grouped related dists into groups based on

0.0

AUC Recal_TN Recall_TP

Fig. 9. Beanplot showing the distributions of AUC, true negative recall and
true positive recall across all dists. The horizontal lines show median values,
while the black shape shows the density of the distributions.

the first part of their name, e.g., Acme, Net, Yahoo, etc. We
thus built 677 explanatory models for 677 groups of dists.

A median of 88% of successful builds and 80% of
failing builds are correctly classified as such based only
on information about OS and environment. Furthermore,
as shown in the beanplots of Figure 9, most of the models
have an AUC value higher 80%, which shows that the models
clearly contain more knowledge than a random guess model.
By using the AUCRF algorithm [30], which implements a
backward-removal process according to the primary ranking of
the variables, we found that OS has a higher explanatory power
than environment for build failure, confirming our earlier
findings in RQ4.

Our models are of course not useful in practice to predict
build failure, since they only include OS and environment,
while ignoring a myriad of other factors, notably related to
source code and overall code quality. However, prediction is
not the point of the models. Instead, we only use the models to

validate the extent to which knowledge of OS and environment
alone are able to explain build failures.

VI. THREATS TO VALIDITY

This study was performed on build data of the CPAN
ecosystem (which is centered on the Perl language). Thus, we
cannot necessarily generalize our observations and answers to
other ecosystems and programming languages. Yet, the num-
bers of builds, OSes, and environments provide an interesting
basis on which to perform future studies and against which to
compare their results.

Regarding construct validity, we fetched the build informa-
tion from the centralized CPAN build archive, which does
not provide the full detailed reports on all errors occurring
during builds. We filtered out builds with corresponding failure
data in RQ1 to RQ4, hence even through we studied 68.9
millions builds and their results, it is possible that other
failures/successes exist.

Furthermore, we observed that multiple builds may occur
for a single combination of OS and environment. Those
builds would typically exercise a distversion on different
variants of an OS/environment of even on different hardware
architectures. We aggregated all builds into one and ignored
the architecture dimension in this work, in the sense that we
chose to describe a combination of OS and environment as
failing if at least 50% of its builds failed or had unknown
build results. This choice could impact our results, although
they follow common sense. Future work includes analyzing in
more details these operating systems and environments with
multiple versions/architectures.

Regarding internal validity, while we studied the impact of
OSes and environments on build failures, we did not perform
in-depth analyses of the reasons for failures/successes of a
given OS version, Perl version or combination thereof, as
well as other factors, like architectures, minor/major releases,
developer experience, module complexity, etc. Given its scope,
manual analysis of build error messages, similar to Seo et
al. [4], is also part of future work. From 39,000 distributions
in CPAN, we chose those ones which were best fit for the
analysis, similarly to recent work on Travis CI [1]. Our results
may be different with a different dataset.

VII. CONCLUSION

Build results have turned out to be a valuable data source for
both researchers and practitioners. However, one cannot trust
the results at face value due to a phenomenon of build inflation,
where individual code changes or package releases yield
dozens of builds across different OSes and environments. This
inflation artificially blows up the importance of certain build
failures, while it hides others. Whereas builds are supposed to
give an indication of the quality of a software product, to some
degree build results reflect more on portability and platform
issues of OSes and environments.

In particular, based on our study of 30 million CPAN builds
between 2011 and 2016, researchers and practitioners should
be aware that:

o the number of builds for a given software product can
see up to 10-fold increases, while the build failure ratio
seemingly decreases substantially (RQ1)

o a given software product like a CPAN distversion is built
on dozens of environments and OSes, many of which are
not stable, popular or commonly supported, and hence
are not equally reliable as build platform (RQ2)

o for a given environment, a working software product
suddenly can start breaking due to changes in the en-
vironment, with only a small chance for recovery (RQ3)

o some OSes are notorious for failing the build (RQ4)

Thus, we conclude that researchers interested in studying
build results should analyze and select the results for the main
OSes and environments, while ignoring other build results.
Moreover, although this observational study is quantitative, it
is the larger to date observing build failures and build inflation
and will serve as the basis of future other qualitative and
quantitative studies on builds and CI.

Future work includes replicating our study at the commit
level, using for example the dataset from Travis CI. We will
also analyze in more details OSes and environments with
multiple versions/architectures. Finally, we want to analyze
error messages of build failures as well as study qualitatively
these failures.

ACKNOWLEDGMENT

Part of this work was funded by the NSERC Discovery
Grant program and the Canada Research Chair program.

[1]

[2]

[3]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

M. Beller, G. Gousios, and A. Zaidman, “Oops, my tests broke the build:
An analysis of travis ci builds with github,” Peer] Preprints, Tech. Rep.,
2016.

M. Fowler and M. Foemmel, “Continuous integration,” Thought-Works)
http://www. thoughtworks. com/Continuous Integration. pdf, p. 122,
2006.

B. Adams, H. Tromp, K. De Schutter, and W. De Meuter, “Design
recovery and maintenance of build systems,” in 2007 IEEE International
Conference on Software Maintenance. 1EEE, 2007, pp. 114-123.

H. Seo, C. Sadowski, S. Elbaum, E. Aftandilian, and R. Bowdidge,
“Programmers’ build errors: a case study (at google),” in Proceedings
of the 36th International Conference on Software Engineering. ACM,
2014, pp. 724-734.

“CPAN comprehensive perl archive network,” http://www.cpan.org, ac-
cessed: 2015-12-22.

“metacpan-api,” https://github.com/metacpan/metacpan-api, accessed:
2016-12-07.

P. Denny, A. Luxton-Reilly, and E. Tempero, “All syntax errors are not
equal,” in Proceedings of the 17th ACM annual conference on Innovation
and technology in computer science education. ACM, 2012, pp. 75-80.
G. Dyke, “Which aspects of novice programmers’ usage of an ide
predict learning outcomes,” in Proceedings of the 42nd ACM technical
symposium on Computer science education. ACM, 2011, pp. 505-510.
R. Suvorov, M. Nagappan, A. E. Hassan, Y. Zou, and B. Adams, “An
empirical study of build system migrations in practice: Case studies on
kde and the linux kernel,” in Software Maintenance (ICSM), 2012 28th
IEEE International Conference on. 1EEE, 2012, pp. 160-169.

B. Adams, K. De Schutter, H. Tromp, and W. De Meuter, “The evolution
of the linux build system,” Electronic Communications of the EASST,
vol. 8, 2008.

S. McIntosh, B. Adams, and A. E. Hassan, “The evolution of ant build
systems,” in 2010 7th IEEE Working Conference on Mining Software
Repositories (MSR 2010). 1EEE, 2010, pp. 42-51.

C. Watters and P. Johnson, “Version numbering in single development
and test environment,” Dec. 29 2011, uS Patent App. 13/339,906.

D. Stahl and J. Bosch, “Modeling continuous integration practice
differences in industry software development,” Journal of Systems and
Software, vol. 87, pp. 48-59, 2014.

R. O. Rogers, “Scaling continuous integration,” in International Con-
ference on Extreme Programming and Agile Processes in Software
Engineering. Springer, 2004, pp. 68-76.

B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov, “Quality and
productivity outcomes relating to continuous integration in github,” in
Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering. ACM, 2015, pp. 805-816.

M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig, “Usage, costs,
and benefits of continuous integration in open-source projects,” in Auto-

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(27]

[28]

[29]

(30]

mated Software Engineering (ASE), 2016 31st IEEE/ACM International
Conference on. 1EEE, 2016, pp. 426—437.

M. Leppinen, S. Mékinen, M. Pagels, V.-P. Eloranta, J. Itkonen, M. V.
Mintyld, and T. Ménnistd, “The highways and country roads to contin-
uous deployment,” IEEE Software, vol. 32, no. 2, pp. 64-72, 2015.

A. Miller, “A hundred days of continuous integration,” in Agile, 2008.
AGILE’08. Conference. IEEE, 2008, pp. 289-293.

E. Laukkanen, M. Paasivaara, and T. Arvonen, “Stakeholder perceptions
of the adoption of continuous integration—a case study,” in Agile Con-
ference (AGILE), 2015. IEEE, 2015, pp. 11-20.

M. E. Zibran, F. Z. Eishita, and C. K. Roy, “Useful, but usable? factors
affecting the usability of apis,” in Reverse Engineering (WCRE), 2011
18th Working Conference on. 1EEE, 2011, pp. 151-155.

J. Dietrich, K. Jezek, and P. Brada, “Broken promises: An empirical
study into evolution problems in java programs caused by library up-
grades,” in Software Maintenance, Reengineering and Reverse Engineer-
ing (CSMR-WCRE), 2014 Software Evolution Week-IEEE Conference
on. IEEE, 2014, pp. 64-73.

T. McDonnell, B. Ray, and M. Kim, “An empirical study of api stability
and adoption in the android ecosystem,” in Software Maintenance
(ICSM), 2013 29th IEEE International Conference on. 1EEE, 2013,
pp. 70-79.

W. Wu, F. Khomh, B. Adams, Y.-G. Guéhéneuc, and G. Antoniol, “An
exploratory study of api changes and usages based on apache and eclipse

ecosystems,” Empirical Software Engineering, pp. 1-47, 2015.
Y. Jiang, B. Adams, F. Khomh, and D. M. German, “Tracing back the

history of commits in low-tech reviewing environments: a case study
of the linux kernel,” in Proceedings of the Sth ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement.
ACM, 2014, p. 51.

B. Adams and S. Mclntosh, “Modern release engineering in a nutshell
— why researchers should care,” in Leaders of Tomorrow: Future of
Software Engineering, Proceedings of the 23rd IEEE International Con-
ference on Software Analysis, Evolution, and Reengineering (SANER),
Osaka, Japan, March 2016.

S. Raemaekers, A. van Deursen, and J. Visser, “Measuring software
library stability through historical version analysis,” in Software Main-
tenance (ICSM), 2012 28th IEEE International Conference on. IEEE,
2012, pp. 378-387.

cpan@perl.org, “PerlSource versions and release date,”
2016-11-01. [Online]. Available: http://www.cpan.org/src/
M. M. Lehman, “Laws of software evolution revisited,” in European
Workshop on Software Process Technology. Springer, 1996, pp. 108—
124.

R. R. Bouckaert, E. Frank, M. Hall, R. Kirkby, P. Reutemann, A. See-
wald, and D. Scuse, “Weka manual for version 3-7-3," The university
of WAIKATO, 2010.

M. L. Calle, V. Urrea, A.-L. Boulesteix, and N. Malats, “Auc-rf: a new
strategy for genomic profiling with random forest,” Human heredity,
vol. 72, no. 2, pp. 121-132, 2011.

accessed:

