
Disentangling Virtual Machine Architecture
Postprint∗

published in IET Software, volume 3, issue 3 (June 2009), pages 201–218

Michael Haupt1, Bram Adams2, Stijn Timbermont3,
Celina Gibbs4, Yvonne Coady4, Robert Hirschfeld1

1Hasso-Plattner-Institut, University of Potsdam, Germany
2GH-SEL, Ghent University, Belgium

3Programming Technology Lab, Vrije Universiteit Brussel, Belgium
4University of Victoria, Canada

{michael.haupt;hirschfeld}@hpi.uni-potsdam.de, bram.adams@ugent.be,

stimberm@vub.ac.be, celinag@uvic.ca, ycoady@cs.uvic.ca

Virtual machine (VM) implementations are made of intricately intertwined
subsystems, interacting largely through implicit dependencies. As the degree
of crosscutting present in VMs is very high, VM implementations exhibit sig-
nificant internal complexity. This paper proposes an architecture approach
for VMs that regards a VM as a composite of service modules coordinated
through explicit bidirectional interfaces. Aspect-oriented programming tech-
niques are used to establish these interfaces, to coordinate module interac-
tion, and to declaratively express concrete VM architectures. A VM archi-
tecture description language is presented in a case study, illustrating the
application of the proposed architectural principles.

1 Introduction

Virtual machines (VMs) are inherently complex systems. They normally consist of
several subsystems, such as an emulation engine, a memory manager, and so forth [1].
Each of these subsystems bears a certain inner complexity: for example, the emulation

∗This paper is a postprint of a paper submitted to and accepted for publication in IET Software, and
is subject to Institution of Engineering and Technology copyright (www.ietdl.org/journals/doc/
IEEDRL-home/copyright.jsp). The copy of record is available at IET Digital Library www.ietdl.org.

1

www.ietdl.org/ journals/ doc/ IEEDRL-home/ copyright.jsp
www.ietdl.org/ journals/ doc/ IEEDRL-home/ copyright.jsp
www.ietdl.org

engine may consist only of an interpreter, or of a combination of the same with a just-
in-time (JIT) compiler for optimised execution. Such a combination brings about an
adaptive optimisation subsystem that monitors application execution and analyses it to
draw optimisation decisions.

All of these subsystems are intertwined in subtle ways even in simple VM implemen-
tations. The choice of a garbage collector frequently influences object layout and JIT
compiler code generation, e. g., when garbage collection maps have to be built. The
choice of mechanisms for synchronisation and locking also influences the two, because
object (header) layout is affected based on that choice.

In other words, even though VMs consist of subsystems with clearly defined respon-
sibilities, these subsystems are not clearly separated from each other: they are not
implemented as modules with clean boundaries that exchange information via dedicated
explicit interfaces. Instead, relations among and dependencies between subsystems are
represented implicitly in the implementation.

As a consequence, VM architectures can be described only at a very high level of
abstraction. As soon as actual implementation decisions come into play, it becomes very
hard to reason about a single VM subsystem in terms of its functionality and interface—
instead, the ways other subsystems interact with it must be considered. This results
in assumptions about other subsystems being scattered over and tangled in multiple
locations.

From a design perspective, even design decisions are hardwired. For instance, the
selection of a memory management scheme influences many different parts of a VM im-
plementation, rather than just the memory management subsystem. In settings where
VMs are regarded as product lines that should support different forms of their various
subsystems—e. g., the Jikes Research VM [2, 3]—, or that should be deployable on dif-
ferent platforms—e. g., Sun’s HotSpot Java VM [4]—it must be possible to create and
handle abstractions for dealing with changing subsystem interactions. It may even be
desirable to support dynamic variability, e. g., by dynamically adapting memory man-
agement strategies in response to the running applications’ requirements [5]. Hardwiring
such decisions clearly reduces variability support.

Interactions between VM components can often be described at a high level of abstrac-
tion in terms of constructions like “when this happens in module X, module Y must
react that way”. At lower levels of abstraction, i. e., in code, representations of such
interactions are mostly implicit, and assumptions about them are hidden.

For instance, a reference counting garbage collector will have to adjust reference
counter values whenever reference assignment takes place. The execution of the sim-
ple assignment x := y involves no less than three VM subsystems or building blocks:
when the interpreter (1a) executes the statement, or when the JIT compiler (1b) gen-
erates code for it, it must be ensured that the garbage collector (2) increments and
decrements reference counts, which in turn are stored in a given location specified by
object layout definitions (3). This example also shows that both static and dynamic
properties of the VM source code are involved: the effects of garbage collector choice on
object layout are static, while interactions between execution logic and garbage collector
are dynamic.

2

The observed issues in VM implementations bear some notable similarities with cross-
cutting concerns, which are also scattered over and tangled with other concerns’ imple-
mentations. Moreover, crosscutting concerns can exhibit effects on both static and dy-
namic properties of code. We therefore argue that aspect-oriented programming (AOP)
techniques can be used to address the aforementioned issues.

VM implementations usually take place at a level of abstraction where copious control
over the underlying machine is required to gain consistent behaviour and predictable
performance. That is, software concerns that are, in typical application development
scenarios, usually regarded as non-functional ones, e. g., memory management and con-
currency, are core functional concerns in the VM domain. As a consequence, some
trade-offs have to be taken into account to apply AOP at full potential in this domain,
mostly related to the treatment of AOP infrastructure, and to the degree of control that
a programmer has over the infrastructure.

AOP research has evolved in several directions, one of the most proliferating of which
is pointcut language design. The first mature pointcut languages could quantify over the
execution of applications in terms of method call and execution, field access, exception
handler execution and the like [6]. Soon after, pointcut languages could quantify over
control flow. More recent developments have explored the use of logic-based pointcut
languages [7] and added capabilities to let a pointcut match when certain join points
occur in a given order over a period of time [8, 9, 10]. Another extension allows for
quantifying over interconnections between objects on the heap [11].

To express the intricate subsystem relationships met in VM implementations, such se-
mantically rich pointcuts are clearly desirable. However, their implementations typically
entail the extensive use of residual code [12] that, depending on its implementation, may
have significant impacts on performance. In the VM area, performance is a core con-
cern, and the “standard” implementations of residues may not be optimal in all cases.
Therefore, we propose to give developers the ability to create domain-specific abstrac-
tions for VM implementations that allow for expressing intricate relationships between
VM subsystems while retaining as much as control over the implementation of possibly
required residual code. That is, domain-specific programming language support for VM
implementations should support reasoning about VM modules and their interactions
declaratively while not hindering the developer in their implementation.

A second research direction relevant to this paper is the degree of freedom in advising
code. One end of the spectrum allows to match join points throughout the entire code
base, even in terms of encapsulated state and behaviour (cf. privileged aspects in As-
pectJ). The opposite extreme restricts the join points which can be advised by explicitly
exposing possible join points [13, 14].

To achieve both modular reasoning and more control in VM implementations, we
propose an architectural approach that is centred on treating a VM as a composition of
services provided to an application. Each of the services constitutes a module with a
clear interface. The interface is bidirectional, offering a set of operations that the module
can be asked to perform, and of a set of exposed join points that occur at run-time when
certain internal properties are met. The circumstances leading to the occurrence of such
joins point may be of great complexity, but the complexity can be reasoned about in

3

terms of domain-specific join point models constituted by join points exposed by service
modules.

While this clearly resembles the crosscut programming interfaces (XPI) [13] or open
modules [14] approaches, we refrain from modularising absolutely all features into ser-
vices and connecting their parts through bidirectional interfaces. Our case study made
it clear to us that a completely and cleanly modularised VM is close to impossible to
achieve. Some concerns are just too crucial or fundamental, and are used throughout all
services. As the number of such concerns is small, it is acceptable to allow some degree of
tangling in them. Scattering should pose no problem, as the concerns in question tend to
be localised well. One of the best examples for this is object layout. Garbage collection
services need to know the exact layout and may even have to add extra fields. Hence,
on the one hand, general-purpose aspect languages offer too much freedom (everything
can be advised), while XPIs and open modules are too restricted in that they impose
a very strong modularity-oriented point of view on code. We adopt a more pragmatic
approach, trying to combine the advantages of both extremes.

The two principles of our approach—domain-specific abstractions and bidirectional
interfaces—are, as a proof of concept, implemented in a declarative architecture descrip-
tion language called Virtual Machine Architecture Description Language (VMADL).
VMADL is used to describe domain-specific join-point models in service module inter-
faces and to coordinate service module interaction, using aspect-oriented techniques.

This paper makes the following contributions:

• an analysis of service decomposition in existing VM implementations,

• a presentation of our architectural approach based on domain-specific abstractions,
bidirectional interfaces, and pragmatic employment of AOP, and

• a case study covering garbage collection and multithreading services.

The next section presents an analysis of several VM implementations, focusing on both
the variability found in traditional decompositions and the relationship between current
infrastructures and VM services in general. In Sec. 3, the service-based VM architecture
proposal is presented in depth. A case study in which these principles have been applied
to a VM implementation is presented and evaluated in Sec. 4. Sec. 5 discusses related
work, and Sec. 6 gives an overview of future work and concludes the paper.

2 An Analysis of Decomposition in Virtual Machines

This section surveys current strategies for decomposing VM infrastructure in source code.
We consider eight modern VMs, both C- and Java-based, and identify the corresponding
decompositions in terms of core services and directory/package structures. The survey
reveals two key results: (1) current VMs display substantial variability in the nature of
their decomposition, and (2) the internal structure of these systems does not explicitly
reflect the architectural elements they all inherently share. This analysis supports the

4

argument that explicit composition of VM services could be best supported in a domain-
specific fashion, where join point models specific to VMs in general could be formulated
according to states in the execution of the system that are common to VMs. Further,
we believe these domain specific join point models must allow module interaction to be
specified relative to well-defined VM states, such as during and after system booting,
involving the intialisation and startup of the VM.

The following three subsections provide a structural analysis based on a survey of eight
high-level language VMs. The first subsection overviews the system structure conveyed
by directory structure of the source tree along with the identification of core services
across all VMs. The following subsection maps the representation of these services onto
the top-level system modularity dictated by the directory structure. Concrete code
examples in Sec. 2.2.1 illustrate the interaction between services that occurs at the level
of directory and file modules.

2.1 System Decomposition

When surveying the fundamental abstractions that constitute VMs, it becomes clear
that there are many ways to decompose the system into modules and subsystems. For
example, Fig. 1 shows a spectrum of six different source trees for C-based VMs. The
use of directory structures is one way of imparting knowledge of an architectural design
from the resulting top-level modularisation. Although at a high level, this evaluation
reveals the variety in dominant decomposition strategies and demonstrates that the set
of services that constitute the core VM are not entirely obvious nor are they agreed upon
between architectures.

For example, consider the part of the system responsible for the operating system
(OS) interface. In Kaffe [15], OS variation is localised within the systems subdirectory;
in Harmony [16], a subdirectory tree associated with each high-level VM subdirectory
contains OS-specific code; in TinyVM [17], variation is contained within vmsource; in
KVM [18], high-level subdirectories separate OS concerns within the system; in SableVM
[19, 20], processor variation is contained within the src directory; and in LeJOS [21], a
top-level platform directory accomplishes a similar structure, albeit for a single processor.
While each of these systems has a different dominant decomposition, they all have a
common goal: to achieve modularisation of core services in a way that will scale as the
VM evolves. As this survey reveals, there is no single strategy emerging as a winner
to provide a clear modular decomposition of all services into directory structures. The
example of the OS interface demonstrates that all services cannot be cleanly modularised
through traditional procedural or object-oriented separation mechanisms. Considering
the memory management example, this is a critical and highly tuned service within a
VM, but we see that only Kaffe decomposes it into a separate folder.

Navigating through the source trees and deeper into the files of each of these systems,
we can begin to tease out core abstractions that are common to this subset of systems.
Core to each is the functionality associated with representation, OS interface, scheduling,
execution, and adaptive optimisation. By representation, we are referring to the internal
infrastructure for application elements such as classes, methods and objects. The OS

5

1 public void run(Context ctx) throws PragmaInline {

2 Interpreter.run(processor_ , ctx.nativeContextHandle_);

3 MemoryManager.the (). observeContextSwitch(Interpreter.getContext(processor_));

4 }

Listing 1: The run method of the OVM.

interface refers to the code that sits directly on top of the underlying system. Scheduling
is taken broadly to refer to threads and synchronisation mechanisms. Memory manage-
ment, again taken broadly, refers to allocation and garbage collection. By execution
we mean the actual run-time engine, the interpreter and JIT compiler for applications.
Finally, by adaptive optimisation we are generally referring to run-time optimisations
employed during application execution.

2.2 Service Representation

Given the conceptual breakdown of VM building blocks into services, Fig. 2 maps these
abstractions onto the package and directory structure of two Java-based implementa-
tions of VMs. This mapping is outlined according to the legend in the figure. This
scattered implementation of core abstractions is consistent with an aspect-oriented per-
spective that, for any given decomposition of a system, there inherently arise multiple
fundamental crosscutting concerns.

Clearly, both C- and Java-based approaches show similar characteristics with respect
to the challenge of modularising these core VM abstractions. Tab. 1 further categorises
the interactions between memory management and scheduling with the rest of the core
services that comprise key abstractions within all VMs. Tab. 2 provides a lower-level view
of the service interactions with threading in a selected subset of VM implementations.

2.2.1 Service Interaction

Listings 1 and 2 provide concrete code examples of these interactions at the level of
individual methods. The method shown in Lst. 1, originating from the OpenVM [22] is
from the Processor class located in the ovm.core.execution package. The location
and name of this class imply that it is an integral part of the execution service in the VM.
As we delve into the internal workings of this class, we find that other services, including
memory management and scheduling, are intersecting at the fine granularity of a method.
The run method highlighted here evokes the interpreter to kick off the execution service
(line 2), but the interpreter itself requires the context of the scheduled thread along with
the current processor to be passed to it. The invocation of the interpreter is followed
by the registration of that context with the memory manager before any memory is
allocated in that thread (line 3).

Lst. 2 is also pulled from a class file in the ovm.core.execution package. This class,
Engine, can likewise be categorised as part of the execution service of the system; but like
with Processor, the code in Engine.java is entangled with code from other core services
in the system including but not limited to representation, memory management and

6

1 static public synchronized Code dynamicCompile(S3ByteCode code) {

2 Code oops = code.getMethod (). getCode ();

3 if (oops != code)

4 Domain d = code.getMethod (). getDeclaringType (). getDomain ();

5 if (((S3Domain) d).sj != null) {

6 Object r = MemoryPolicy.the(). enterHeap ();

7 try {

8 d.getRewriter (). ensureState(code , S3ByteCode.REWRITTEN);

9 return SimpleJITDynamicJITCompiler.dynamicCompile(code);

10 } finally {

11 MemoryPolicy.the(). leave(r);

12 }

13 } else {

14 throw Executive.panic("can’t compile " + code.getSelector ());

15 }

16 }

Listing 2: Interaction between three subsystems in one method.

Memory Management Scheduling
Representation object layout, GC info in object headers lock fields in object headers
OS Interface heap allocation, paging mechanism green/native threads
Scheduling stop-the-world, concurrent GC N/A
Execution JIT compiler computing GC maps, pre-emptive scheduling

stack layout
Adaptive Optimisation object locality optimisation thread,

on-stack replacement

Table 1: Key interactions between memory management and scheduling and the other
core VM services.

adaptive optimisation. This method, while dealing with dynamic compilation, requires
representation services to find the method (line 2) and its type (line 4). The memory
manager is also involved when the execution is forced to enter and exit the heap memory
space associated with the memory policy around the JIT dynamic compilation of the
code (lines 6, 11).

The Jikes RVM [2, 3] is a rich testbed for research in the area of advanced virtual
machine technologies. It has particularly been a hotbed of research in the areas of
memory management and adaptive optimisation. Part of the Jikes RVM architectural
overview [23] centers on the optimisations of the M:N threading model implemented
by inserting yield points at principled points throughout the system and associating
required functionality at those points in terms of related services.

The perform method shown in Lst. 3 is located in the file OPT YieldPoints.java in
the com/ibm/jikesrvm/opt directory. This method shows the ways in which yield points
may be inserted into method prologues, loop heads and method exits, as long as the code
is not uninterruptable in support of the multithreading model in the Jikes RVM. The
ensuing yield point code sequence is a combination of processor flag checks and scheduler
invocations. This threading support is also entangled with memory management (lines
8,16), as all threads must reach a safe point before a collection cycle occurs.

7

1 public final void perform (OPT_IR ir) {

2 if(!ir.method.isInterruptible ()) {

3 return;

4 }

5 // (1) Insert prologue yield point unconditionally. As part of prologue/

6 // epilogue insertion we’ll remove the yield points in trival methods that

7 // otherwise wouldn ’t need a stackframe.

8 prependYield(ir.cfg.entry(), YIELDPOINT_PROLOGUE , 0, ir.gc.inlineSequence);

9 // (2) If using epilogue yield points scan basic blocks , looking for returns

10 // or throws

11 if(VM.UseEpilogueYieldPoints) {

12 for(OPT_BasicBlockEnumeration e = ir.getBasicBlocks (); e.hasMoreElements ();) {

13 OPT_BasicBlock block = e.next ();

14 if (block.hasReturn () || block.hasAthrowInst ())

15 prependYield(block , YIELDPOINT_EPILOGUE , INSTRUMENTATION_BCI ,

16 ir.gc.inlineSequence);

17 }

18 }

19 }

Listing 3: Logic for inserting yield points in JIT-compiled code in the Jikes RVM.

VM Service Total Files Service Files Interacting Modules
KVM pre-emptive threading 64 C files 2 C files 47 modules

asynchronous support
Kaffe threading, 176 C files 25 C files 8 modules

6 models
RVM M:N threading model 664 Java files 25 Java files 76 Java files
HotSpot threading, 604 C++ files 21 C++ files 35 C++ files

7 models
CSOM threading, 66 C files 5 C files 22 functions
(cf. Sec. 4) green and native 4 aspect files

Table 2: Coarse-grained analysis of threading in various VMs using simple grep com-
mands.

8

3 Disentangled Virtual Machine Architecture

In this section, we will propose an approach for VM architectures. Our approach treats
the various subsystems of a VM implementation as services offered to an application
run by the VM. Services are modules, and they have clean boundaries.

This section first presents a high-level overview of the architectural approach that we
propose. After that, we will briefly present the structure of VM architecture descrip-
tions using VMADL, the proof-of-concept architecture description language that is used
throughout the case studies in the following section.

3.1 Architectural Approach

For illustration purposes, we will use a VM consisting of six subsystems as introduced in
Sec. 2: application representation, scheduling, memory management, execution, adaptive
optimisation, and operating system interface. Seen at a high level of abstraction, the
typical structure of an implementation of such a VM can be depicted as in Fig. 3.

Each of the shapes in Fig. 3 represents the source code of one of the subsystems.
The different subsystems are mostly modularised, but parts of their implementations
are scattered across the system and tangled within source code pertaining to other
subsystems.

Our approach to VM architecture focuses on establishing a clear modularisation for
VM subsystems. This is achieved by applying aspect-oriented programming techniques
in a pragmatic way. The different subsystems of a VM are regarded as services that the
VM provides to the running application—e. g., services for application representation,
scheduling, memory management, etc. Some fundamental concerns, such as object lay-
out, are not modularised, but treated as “base code”. This allows more controlled and
focused changes which have influences throughout the whole system. We sacrifice some
clarity for tangling, but we gain a more agile VM implementation in return. This will
be illustrated later on.

Service Modules A service’s boundary is defined in terms of an interface that, on the
one hand, provides means to invoke functionality of the service (its API). On the other
hand, the interface exposes certain points of interest that occur internally and may be of
interest to other services (the service’s XPI [13, 14]). Hence, the interface is bidirectional.
Service modules share this property with open modules [14].

An illustration of this implementation principle is shown in Fig. 4a. A service module
is a superstructure comprising of several actual implementation modules (e. g., C source
files) and may have a large internal complexity, but it is a module at an architectural
level; one that can clearly be assigned a responsibility in terms of VM functionality.

During the execution of service functionality, certain situations arise where service
interaction takes place. Applying the usual manner of VM implementation, service
interaction code—e. g., through invocations of other services’ functionality—would be
hardwired into the source code of the service.

9

The architectural approach we propose takes a different road: the situations where
service interaction should take place are declaratively described using pointcuts that
quantify over the join points occurring during the execution of service functionality. Such
pointcuts are however not directly associated with advice, but instead their matching
constitutes the occurrence of a point of interest exposed from the service module.

The join point model and pointcut language applied at this level of granularity can
be any that are sufficiently powerful to express the aforementioned situations of interest
(cf. Sec. 3.2). An exposed point of interest comes with the according context information
to be exploited by client services.

Composing Services Actual VM architectures are declaratively described. The static
structure of the implementation is described by choosing a set of concrete services; and
the dynamic service interactions are realised by declaratively describing them in terms
of reactions to points of interest exposed from service modules—at the level of service
composition, the join point model is constituted by all points of interest exposed from
service modules, which are called service-exposed join points.

Fig. 4b shows, at the same level of abstraction as Fig. 3, what VM architecture looks
like when the principles described above are applied. The VM consists of a collection
of clearly bounded service modules. Interactions among them are described in terms of
service-exposed join points, pointcuts quantifying over them, and invocations of service
functionality in case such a pointcut matches.

Thus, AOP techniques are applied in this model at two degrees of abstraction, namely
by introducing different join point models both inside service modules and at the level
of service module interaction. On the one hand, intra-module execution-level join points
are quantified over to make up service-exposed join points. On the other, service-exposed
join points are quantified over to drive service interaction through advising. The two join
point models found in the architecture approach are separate from each other. Service-
exposed join points can be assigned meaningful names, constituting domain-specific join
point models that improve declarativeness at the architectural level.

Discussion Among the advantages of this approach, it is clearly worth mentioning that
VM subsystem interactions can be expressed very cleanly. Service module interfaces
concisely describe, on the one hand, the set of service requests client modules may send
to a module, and, on the other, the set of join points exposed from within the module
to which clients may attach. Actually, through the use of service-exposed join points,
a user-level or, respectively, domain-specific join point model is created that allows for
declaratively describing service interactions.

Clean interfaces that do not impose assumptions regarding module internals on clients
improve modularity in that they help decoupling the various subsystems from each other.
Given the high and intricate complexity of subsystem interactions in VM implementa-
tions, this is especially welcome. Moreover, increased decoupling is likely to increase
reusability of single modules, and even reconfigurability of entire VM architectures or
parts thereof. Sec. 6 gives information on how we plan to address this.

10

Of course, service module providers are responsible for exposing the right join points
that clients may require to attach to. Join point exposure also requires detailed knowl-
edge about service module internals, which may not always be available, e. g., when a
new join point needs to be exposed from a third-party module.

One may also ask whether the extensive use of join points, pointcuts and advice in
implementing service module interactions degrades performance, which is critical in the
domain of VM implementations. While this concern is understandable, it is clearly the
responsibility of the AOP implementation to provide the required performance charac-
teristics. It has been shown that the employment of AOP techniques does not have to
have a negative impact on performance at all [24]. Also, our pragmatic adoption of AOP
ideas explicitly deals with efficiency concerns in the core of the VM implementation.

3.2 Applied Disentangling

In this section, we give an overview of VMADL (virtual machine architecture description
language). It is an aspect-oriented ADL that introduces some constructs for describing
VM architectures in terms of service modules and their interactions. VMADL con-
structs are imposed on the actual language used for a particular VM implementation,
and to an aspect language that can be used in conjunction with said implementation
language. Thereby, VMADL acts as a front-end to both the implementation and the
aspect language; it is not conceptually restricted to, e. g., Java- or C-like languages.

The examples used throughout this paper stem from a VM implementation written
in C (cf. Sec. 4). Aspicere2 [25, 26] was used as the aspect language. Its pointcut and
advice syntax resemble those of AspectJ [6, 27], hence the examples should be easily
accessible to readers familiar with that language.

Service Module Structure A service module is constituted by two main parts: all
implementation modules (such as classes in object-oriented programming languages) on
the one hand, and a service module declaration on the other.

The former are not special; they constitute the functionality of the respective service
or VM subsystem. The actually interesting part is the service module declaration, which
is responsible for determining the set of classes that make up the module, for declaring
service-exposed join points, and for declaring interaction with other service modules.

The rough structure of a VMADL service module declaration is shown in Lst. 4. De-
pending on the VM implementation language at hand, the service module declaration
may start with a number of import statements, #include directives or the like that
serve the same purpose as in the corresponding implementation languages.

A service may have “global” state, i. e., state that is global with respect to the service
and should hence be accessible from all implementation modules that constitute it. Such
global state is declared like it would be in a plain implementation module. The expose

section specifies a list of service-exposed join points which can be advised by other
services. What follows is a list of interactions between this service and the join points
exposed by other services. Finally, the startup section specifies which operations must
be performed in order to get this service running. It may start with a method which

11

1 // may be preceded by import statements , #include directives , etc.

2 service MyService {

3 // declarations of any service -wide "global" state

4

5 expose {

6 // list of service -exposed join points , complete with name and context

7 // parameters

8 }

9

10 // list of interaction specifications denoting to which service -exposed join

11 // points this service reacts

12

13 startup {

14 // optional entry point that has to be invoked to get this service running

15 boot void initialize_me ();

16

17 expose {

18 // list of startup -time service -exposed join points

19 }

20

21 // list of startup -time interaction specifications

22 }

23 }

Listing 4: Structure of a VMADL service module declaration.

should automatically be invoked and it may expose and advise join points which will only
be active during startup-time. If a join point should be exposed both during startup-
time and normal execution-time, the join point declaration is preceded by the always

modifier.

Example To illustrate how interaction specifications by means of bidirectional inter-
faces may look in practice, Lst. 5 shows fragments of two service modules Execution
and GC. The example is based on the code given in Lst. 2 on p. 7 and shows how the
crosscutting relationships found in that code can be dealt with.

The example shows how both startup and run-time join point exposure are employed
to coordinate interaction between the execution and garbage collection services. During
startup, the execution service exposes a join point denoting when the interpreter boots
(lines 4–6); when this join point is signalled, some context information is passed along
that can be used in attached advice (lines 19–22).

Later on, the execution service exposes a join point signalling that method compilation
is taking place (lines 10–12). Method compilation effectively starts with the invocation of
Domain.getRewriter() and ends after the call to the JIT compiler’s dynamicCompile()
method completes. The span construct covers this kind of join points that actually
denote a whole range of instructions. As the garbage collection service shows (lines
24–29), advice can be attached to such join points in the normal way.

Implementation VMADL’s realisation features a preprocessor that transforms VMADL
specifications into constructs—aspects, pointcuts, advice—of the target language. In the

12

1 service Execution {

2 startup {

3 expose {

4 interpreterStartup(Context ctx):

5 call(void Interpreter.run(proc , *)) where

6 ctx = Interpreter.getContext(proc);

7 }

8 }

9 expose {

10 compilation ():

11 span(call(* Domain.getRewriter ()),

12 call(* SimpleJITDynamicJITCompiler.dynamicCompile (..)));

13 }

14 // ...

15 }

16

17 service GC {

18 startup {

19 after(Context ctx):

20 Execution.interpreterStartup(ctx) {

21 MemoryManager.the (). observeContextSwitch(ctx);

22 }

23 }

24 Code around():

25 Execution.compilation () {

26 Object r = MemoryPolicy.the(). enterHeap ();

27 try { proceed(); }

28 finally { MemoryPolicy.the (). leave(r); }

29 }

30 // ...

31 }

Listing 5: A possible application of service module abstraction to the OVM.

13

case study in Sec. 4, C is the target language used for the VM implementation, and As-
picere2 [25, 26] is used as the AOP language. As VMADL tries to be aspect-language
agnostic, there can be various language back-ends.

4 Case Study

In this section, we present a case study in which we have applied the principles described
in this paper. The case study revolves around CSOM, a VM used in teaching, and deals
with the integration of garbage collection and multithreading. We first briefly present
CSOM and its architecture before we move on to describing and evaluating how the
various extensions have been achieved.

4.1 CSOM

CSOM is a VM for a Smalltalk dialect which is used for teaching purposes. Its precursor,
SOM (Simple Object Machine) was developed at the University of Århus, and was
implemented in Java. CSOM is the port of SOM to C that has been done at the Hasso-
Plattner-Institut, where it is used in courses on VMs.

The architecture of CSOM is deliberately simple to allow for its use in teaching.
Fig. 5(a) shows the high-level service decomposition of CSOM, whereas Fig. 5(b) zooms
in on the source code dependencies between the various services. CSOM consists of
four services: a simple bytecode interpreter, an object model for representing Smalltalk
entities, a memory management service and the universe. The interpreter implements
the interpretation of the Smalltalk bytecodes. CSOM’s object model provides a number
of operations such as accessing the fields of an object and sending messages, and it
implements a number of native classes, such as numbers, tables and activation records.
The memory service is rather trivial, as it simply relies on C’s malloc and performs
no automatic memory management. The universe maintains global Smalltalk objects
(primarily all the classes in the system).

Each of these services comprises one or more implementation and header files. The
standard implementation is completed with a Smalltalk parser and compiler, and a
standard library of roughly two dozen classes. Neither automatic memory management
nor JIT compilation are supported. The CSOM source code consists of 76 C files (37
source and 39 header files) accounting for 4753 SLOC1. Although CSOM is a rather
simple VM, we already encountered crosscutting during our experiments.

In our case study, CSOM has been extended with four extra services, two for garbage
collection and two for multithreading. We have opted for these two kinds of services
because garbage collection is a very crucial concern, whereas one can in principle do
without multithreading. We did not combine multiple garbage collection and/or mul-
tithreading services at the same time, as we did not focus on resolving interactions.

1The number of non-blank, non-comment lines of C code according to http://www.dwheeler.com/

sloccount/.

14

http://www.dwheeler.com/sloccount/
http://www.dwheeler.com/sloccount/

number of new. . . number of modified. . . #added
.c .h lines .c .h lines loci lines

reference counting 0 0 0 15 3 22 37 170
mark-sweep 0 0 0 7 2 39 25 332
native 3 3 268 5 5 3 13 333
green 1 1 148 5 3 2 9 78

Table 3: Data for CSOM with each of the four extensions.

Instead, we have made eight different versions of CSOM: four in which one garbage col-
lection or multithreading service has been implemented without VMADL, and four in
which we have used a VMADL description to integrate a garbage collection or multi-
threading service. The versions of CSOM that were built using AOP techniques show no
differences in observable behaviour from the tangled implementations. The next sections
present VMADL code fragments for the services, followed by a discussion of interesting
issues related to them.

Performance was, given the proof-of-concept state of the implementation, only cur-
sorily evaluated. The test suites and benchmarks that are included with CSOM were
run to get an impression of the performance impact due to using AOP techniques. No
notable overheads were observed. We expect this to be true as well for a future full
implementation, which will be evaluated thoroughly.

4.2 VMADL Applied to CSOM

This section presents the VMADL implementation of the four garbage collection and
multithreading services we have integrated with CSOM one at a time. The interactions
between the basic CSOM services on the other hand are not of such a complexity that
they need the advanced constructs of VMADL. It is mainly the introduction of proper
memory management and multithreading services that cause the high degree of cross-
cutting. Therefore, we present the VMADL implementations of the object model, inter-
preter and universe services after introducing memory management and multithreading,
so that we learn which join points should be exposed along the way. The code for these
services is shown in Lst. 8.

4.2.1 Garbage Collection in CSOM

Two garbage collection implementations have been realised, namely a reference counting
and a mark-sweep collector [28]. Both implementations are very interesting for studying
crosscutting concerns in VM implementations, not only because they are, as memory
managers, naturally closely interwoven with the rest of the system, but also because
they follow very different approaches.

On the one hand, a reference counting collector requires the VM to update the ref-
erence counts of VM objects whenever pointer assignments are made in the executed
program. As soon as the interpreter executes an assignment of the form x := y, the

15

reference count of the object referenced by y must be incremented because x now refer-
ences the same object. Conversely, the count of the old object referenced by x must be
decremented. Garbage collection is done on the fly when reference counts reach zero.

On the other hand, a mark-sweep collector does not observe all reference updates, but
instead checks, upon allocation requests, whether memory is exhausted. If so, garbage
collection is performed before allocation is done. Collection is carried out in two phases,
during which the application execution is paused. In the first phase, all live objects are
marked starting from a root set comprised of global constants (e. g., loaded classes) and
the current stack frame. In the second phase, the heap is traversed, and all unmarked
objects, i. e., those that are no longer live, are de-allocated.

Reference counting and mark-sweep collectors exhibit significant differences in the
degree of crosscutting they introduce in a VM implementation. While a mark-sweep
collector essentially only attaches to allocation requests and operations that affect the
root set, a reference counter interacts with all parts of the VM that manipulate object
references. This is apparent when comparing an initial version of CSOM without auto-
matic garbage collection with a tangled, non-AOP version with either reference counting
or mark-sweep. Tab. 3 shows some metrics for this, and Fig. 6(a) shows the architectural
changes for the tangled reference counting implementation. Neither reference counting
nor mark-sweep have introduced new files, although at least 170 SLOC have been added
to existing files. The last five columns of Tab. 3 very clearly show the different cross-
cutting natures of reference counting and mark-sweep. For the former, CSOM has been
modified in 37 places spread across 15 .c and 3 .h files, and 22 existing lines have been
changed. Fig. 6(a) shows that each service has been altered. Mark-sweep, on the other
hand, has led to changes in only 25 places in 7 source and 2 header files, all of which
belong to the memory and object model services. Still, 39 original lines were modified.

For reference counting, the biggest changes involve the addition of an extra reference
count field to the object layout and of the logic to update this counter. The latter
consists of scattered calls to the new counter increment and decrement functions in the
supporting data structures (lists, abstract syntax tree nodes in the compiler, etc.) as
well as in the two functions which handle assignment to object fields and array elements.
Extra care is taken to handle stack push and pop operations. In the case of mark-sweep,
changes are far less wide-spread, as only the object layout has been extended with one
extra bit, the (de-)allocation functions have been rewritten and logic has been added for
determining the root set.

The code in Lst. 6 shows part of the service implementation for the reference counting
garbage collector. The assignment of a new value to a certain field in an object is advised
in order to properly deal with the reference counts: the new value’s reference count must
be incremented; the old value’s, decremented—possibly triggering de-allocation. The
pointcut expression uses a join point exposed from the ObjectModel service (cf. Lst. 8).

Fig. 6(b) displays the influence of the VMADL specification for reference counting on
the CSOM architecture. Instead of requiring changes to each service, only the object
model (extra field) and memory management have been changed. The other changes of
Fig. 6(a) have been replaced by advice on the interpreter, universe and object model
services. Hence, the VMADL specification has enabled a more modular extension of

16

1 service RefCountGC {

2 ...

3 around(VMObject object , int index , VMObject newValue):

4 ObjectModel.object_assignment(object , index , newValue)

5 {

6 // store the old value temporarily

7 VMObject oldValue = object_get_field(object , index);

8 proceed();

9 increment_reference_count(newValue);

10 decrement_reference_count(oldValue);

11 }

12

13 after(VMObject object): Universe.new_global_object(object) {

14 // mark the object as "global", i.e., immortal

15 gc_set_global_object(object);

16 }

17

18 }

Listing 6: Reference counting implementation in VMADL.

CSOM in the case of reference counting. For the mark-sweep service, improvements
are not that significant, as this service only requires changes to the object model and
memory management services.

4.2.2 Multithreading in CSOM

As for garbage collection, two approaches have been realised for multithreading as well:
native threading using POSIX threads (pthreads) [29, 30], and green threading, i. e., a
realisation of threading that resides entirely in the VM implementation itself.

Again, both approaches show different crosscutting characteristics. The implementa-
tion of native threads—basically allowing for multiple instances of the interpreter running
in parallel—calls for all accesses to interpreter state being transformed into accesses to
thread-local storage. This affects the entire interpreter implementation.

Conversely, green threading only requires a few extensions to the interpreter to allow
for context switches at well-defined points. The green threading implementation in
CSOM performs context switches when the interpreter executes return instructions.

Again, we compare a tangled implementation of both multithreading implementations
with a VMADL implementation (cf. Tab. 3). Multithreading clearly shows to be less in-
vasive than garbage collection, as changes are localised in some new files and in a limited
number of places in the original code. Native threading requires slightly more changes
and almost four times as much extra code. Fig. 7(a) shows the service architecture for
native threading. The threading logic is explicitly invoked from within the interpreter
and the universe. The latter two services are also the only ones which are altered by the
tangled implementation of green threading.

Unlike the garbage collection implementations, the two threading versions both in-
troduce new source files (scheduler, signals, etc.) or—in case of native threading—
dependencies on external libraries. Native threading requires safe access to the current

17

1 service GreenThreading {

2 startup {

3 after(): Universe.vm_setup () {

4 // load and instantiate scheduler classes

5 ...

6 }

7 after(String core_file): Universe.load_primitives(core_file) {

8 // load the primitive methods on the scheduler classes

9 ...

10 }

11 }

12

13 after(): Interpreter.return_bytecode () {

14 reschedule ();

15 }

16 ...

17 }

Listing 7: Green threading implementation in VMADL.

frame and thread via explicit getters and setters to synchronise access between threads,
while the global variables themselves have to be made thread-local. The core of this
threading approach is the code which handles spawning a new thread for the execution
of a code block. Finally, care has to be taken to initialise and clean up threads. Green
threading is much simpler, as one does not rely on real operating system support for it.
Here, the most basic action is the calling of the scheduler after execution of a return
bytecode to possibly yield control to another thread. The other modifications merely
add extra state and threading functionality.

The code in Lst. 7 shows part of the green threading service implementation, beginning
with a startup section containing two pieces of advice. Both pointcuts used are exposed
from the Universe service. The advice following the startup yields control to the
scheduler after every return bytecode executed by the interpreter.

The code in Lst. 8 shows parts of the implementations of the Universe, ObjectModel
and Interpreter services, more precisely the definitions of the exposed join points that
are used by the reference counting and green threading services. The pointcut definitions
may refer to private members of the service implementation since other services only see
it as one “primitive” join point of the user-level join point model.

Fig. 7(b) shows the service architecture of CSOM with the VMADL implementation
of native threading. No default service of CSOM has been altered. Instead, the new
native threading service is integrated with CSOM via advice (two dotted edges). The
green threading implementation achieves the same effect. Hence, for the multithread-
ing services VMADL enables us to extend CSOM in a modular way without requiring
changes to the base services.

4.3 Discussion

As observed for the garbage collection and multithreading services, domain-specific ab-
stractions and bidirectional interfaces make composing a VM implementation easier.

18

1 service Universe {

2 startup {

3 boot void universe_initialize ();

4 expose {

5 vm_setup (): execution(initialize_globals ());

6 load_primitives(char* coreFile):

7 call(dlopen(corefile , *));

8 ...

9 }

10 ...

11 }

12 expose {

13 new_global_object(VMObject object):

14 execution(symbol_table_insert(object))

15 || execution(set_global (*, object));

16 ...

17 }

18 ...

19 }

20

21 service ObjectModel {

22 ...

23 expose {

24 object_assignment(VMObject object , int index , VMObject newValue):

25 execution(object_set_field(object , index , newValue));

26 ...

27 }

28 }

29

30 service Interpreter {

31 ...

32 expose {

33 return_bytecode ():

34 (call(do_return_local ()) || call(do_return_nonlocal ()))

35 && withincode(interpreter_start);

36 ...

37 }

38 ...

39 }

Listing 8: VMADL implementation (parts) of the Universe, ObjectModel and Interpreter ser-
vices.

19

First, every service offers a clear and coherent functionality. Fundamental concerns
which have not been modularised are easily identifiable, too. Second, each service ex-
plicitly states which other services it uses, either for start-up or at run-time, and what
functionality it offers. Understanding is favoured by the use of concepts of the VM
domain in the service specifications.

Multithreading has been very straightforward to implement, as it did not touch on
core data structures or concepts of the VM. Garbage collection, on the other hand, has
raised two important issues, which we now discuss.

Structural Crosscutting in Object Layout Both garbage collection services require
changes to the object layout. This could be handled by applying inter-type declarations
(ITD) to add some fields to the respective C struct. However, as object layout is crucial
to a VM, fine-grained control over the placement of new fields is indispensable. Mark-
sweep only requires one extra bit, so sloppy programming could potentially add one extra
word to every object. Dealing with this using ITD requires a very powerful, complex
pointcut language capable of dealing with conflicting introductions of state. If another
service also requires an extra bit, there could be a fight to get the most favourable bit
location.

The second approach would be a data structure like a hashmap or bitmap inside the
new service itself, which is ideal for conflict resolution as the new state is private to the
service. However, memory is wasted this way, and lookup mechanisms cause overhead.
In addition, garbage collection should know about the full object layout in order to clean
up objects, hence extending the layout in a localised way does not work.

As mentioned before, object layout is crucial to a VM. To effectively apply AOP, the
requirement of modularising everything inside the VM should be relaxed. Instead, this
case seems to point out that it is advantageous for some very fundamental concerns in
a VM implementation to leave things tangled. Concretely this means that for example
in the VMADL version of the reference counting extension, the interaction with the
interpreter is expressed using AOP, but the field for storing the reference count is still
manually added to the object model.

Finding Roots Finding roots for mark-sweep garbage collection requires knowledge of
all global and local variables in existence when the mark phase starts. In the extreme,
this could mean that every service needs to expose all its global variables together with
every combination of method execution and a local variable. In practice, this boils down
to classic, unrestricted AOP, as if no VMADL interface mechanism was in use. We
therefore did not express this interaction in VMADL, as it would defeat the point.

A second possibility of dealing with this is via the notion of critical sections. VM
code would be designed from scratch in such a way that, when allocation is requested,
previously allocated local variables will not be used anymore, as they are unsafe to use.
This requires a priori knowledge about possible garbage collection schemes which will
ever be used. Also, not all schemes make use of this, e. g., reference counting.

20

Summary The preceding paragraphs show that, even with domain-specific abstractions
in place, important issues remain to be dealt with. We would like to stress that a
dogmatic adoption of AOP techniques is, in our opinion, not beneficial. However, the
mechanisms we propose significantly improve modular abstraction and communication
between modules, as observed in Fig. 6(b) and 7(b). By applying VMADL, we have been
able to express several crosscutting concerns in a more modular way, reducing scattering
and tangling in our VM implementation.

5 Related Work

The work presented here greatly benefits from both lessons learned and recent advances
from the systems and AOSD communities, respectively.

The systems software kernel MACH [31] exhibited a modular infrastructure key to
its improved scalability and extensibility relative to its monolithic counterparts. By
better modularising key abstractions such as tasks, threads, and memory objects, a
spectrum of scheduling and virtual memory policies could be realised from these core
mechanisms. Further, microkernel architectures, such as Exokernel [32] and Nemesis [33]
echoed the need for identifying the right abstractions and exposing the right interfaces
within the kernel in order to support OS services in user space. We not only share
these same motivations, but also the sense that current VM infrastructures suffer from
their monolithic nature. In operating systems, this alternative architecture revealed the
precise ways in which simple vertical-layering fails to capture service interaction.

Operating systems such as SPIN [34] set the stage to consider issues such as granularity
and composition of extensions in OS code. Instead of moving OS services to user space,
these systems effectively introduced user code to kernel space. Similarly, work aimed at
extending VMs [35] considers ways in which lower-level interfaces can be safely accessed
by user applications. A common theme in all of this work is the need to have the right
abstractions and interfaces exposed to support the composition of services.

The systems community is also exploring language-based solutions to the problem
of making interactions explicit according to domain specific needs. NesC [36] is an
extension to C designed to capture key abstractions in TinyOS [37]. Components specify
behaviour according to bi-directional interfaces that are explicitly provided or used by
a given component. A NesC interface declaratively identifies an interaction between
components based on the ability to register interest in an event and to receive a callback
when an event happens. In keeping with the approach used in NesC, we would like to
separate construction and composition. Not only does this approach promote a means
of more easily assembling a system from services, but it enables capturing and making
explicit complex interactions between services.

More general component models from this community include the THINK framework
for building OS kernels [38]. This framework is an implementation of the Fractal com-
ponent model, which enables system designers to specify which operations from other
components a given component requires when a given situation arises. It is the ex-
plicit representation of these kinds of interactions that we share in common with the

21

motivation of the work on THINK.
Previous work on architecture languages includes Darwin [39] and ArchJava [40]. Dar-

win is a declarative binding language used to define hierarchic compositions of intercon-
nected components involved in distributed applications. Central abstractions managed
by Darwin are services and components, where services are the means by which compo-
nents interact. ArchJava is an extension to Java that uses architectural specifications
similar to those in Darwin. ArchJava explicitly couples software architecture with im-
plementation by leveraging a type system to ensure that code conforms to architectural
constraints. In general terms, we share with these systems the motivation to make
services and architectural specifications an explicit feature of system compostion.

Service modules’ bidirectional interfaces as met in VMADL are conceptually very
close to both crosscutting interfaces (XPIs) [13] and open modules [14]. Both support
the exposition of pointcuts; open modules moreover exhibit an API for inbound requests.
Matches of an open module’s exposed pointcuts, or calls to one of its API methods, can
be advised, but not its internal implementation. Moreover, both XPIs and open modules
essentially express design rules that improve decoupling in a system.

The main difference between bidirectional interfaces on the one hand, and XPIs and
open modules on the other lies in the domain-specific abstraction of run-time stages that
service modules support: certain join points are exposed, and certain service module in-
teractions take effect at startup time only, which is declaratively specified. Bidirectional
interfaces are also different from XPIs in that the latter merely serve to expose pointcut
definitions [13], while the former support the exposure of join points, the specification
of interactions with other modules, and API definitions. In that regard, bidirectional
interfaces are actually a variant of open modules that has been augmented with domain-
specific declarative means.

DAOP-ADL [41] is an aspect-oriented architecture description language. It is geared
towards component-based applications. While it allows for describing application archi-
tectures, the granularity of its join point model is that of messages being sent between
components. DAOP-ADL does not allow for declaring join points to be signalled from
within a component; all interaction is solely described in terms of the interfaces of com-
ponents.

Research on VM architectures with an emphasis on improving modularity is rare.
Three projects that deserve attention are JavaInJava [42], JnJVM [43], and ORP [44].
The JavaInJava project was conducted as an internal research project at Sun, with the
goal of developing a cleanly modularised Java VM in the Java programming language.
JavaInJava is extremely simple, featuring a plain bytecode interpreter and entirely re-
lying on the host JVM for memory management—it is not surprising that the achieved
architecture is reported to be well-modularised and understandable [42].

JnJVM and ORP both rely on strict and clean interfaces in their architectures, and
they do so for similar reasons: ORP is a research platform designed for flexibility, JnJVM
is intended to be tailorable by VM plugins that applications bring along for specific
optimisations. In both cases, however, the interfaces that are used are unidirectional
APIs; the degree of module interaction support is naturally lower than that brought
about by VMADL.

22

Finally, the way VM implementations are organised using bidirectional interfaces—
with modules exposing join points other modules can advising—resembles the organisa-
tion of publish/subscribe system architectures. We argue that this resemblance is at a
very high level of abstraction only. Publish/subscribe systems usually have some form
of first-class representation of events that is available at run-time, and that requires an
infrastructure to handle and manage events. Since a core concern of VM implemen-
tations is performance, having a sophisticated event handling infrastructure is not an
option. Performance is achieved through weaving techniques and implicit handling of
join points.

6 Summary

We have presented an analysis of crosscutting concerns in VM implementations and given
examples for them. Motivated by our observation that VM implementations consist
of many intricately combined crosscutting concerns, we have proposed an approach to
organising VM architectures based on service modules, i. e., modules that each implement
one well-defined service that the VM provides to applications running on it.

Interactions among service modules are organised using service-exposed join points—
points of interest signalled from within a service module. They are defined using aspect-
oriented means. The coordination of module interaction is also realised via AOP tech-
niques, allowing for the expression of VM architectures with explicit dependencies. We
have given several examples supporting our approach, and demonstrated its feasibility in
a case study featuring a simple yet functional VM implementation. The systems in the
study were realised using a preliminary proof-of-concept version of VMADL, a language
derived from the presented approach.

In our ongoing work, we are concerned with the investigation of how the application
of the proposed architectural concepts can affect future VM development. An important
insight that we have gained is that refactoring existing VM code to VMADL-based im-
plementations is tedious, if not infeasible. As a matter of fact, VM implementations like
HotSpot or Strongtalk have not been designed and implemented with a clean and mod-
ular architecture as their main objective. A VM implementation that faithfully adopts
our proposed architecture will most likely have to be developed from scratch. Therefore,
it is a core interest of our ongoing and future work to gain a better understanding of the
requirements on service module interfaces.

We expect VM architectures based on the principles discussed herein to exhibit in-
teresting properties. In particular, we will investigate in how far the increased decou-
pling and disentangling gives rise to regarding VM architectures from a product-line
perspective, including the expression of variabilities and tailorability of concrete VM
implementations in a product line. Part of our research will consequently concentrate
on establishing common interfaces for VM services.

It is also interesting to assess the architectural soundness of VMADL specifications,
exploiting the interaction descriptions that can be directly derived from such specifica-
tions. To that end, it will have to be investigated how single service modules can be

23

validated, and how such results can be combined to validate the entire architecture.

Acknowledgements

The authors are grateful for the valuable contributions to and comments on this paper
that were made by Jan Vitek, Wolfgang de Meuter, Theo D’Hondt, and Pascal Costanza.

Bram Adams is supported by a BOF grant from Ghent University. Stijn Timbermont
is supported by a doctoral scholarship of the Institute for the Promotion of Innovation
through Science and Technology in Flanders (IWT-Vlaanderen), Belgium.

Martin Beck, Juri Engel, Gregor Gabrysiak, Jan Klimke, Thomas Kowark, Martin
Sprengel, and Martin Zahn have worked on the original (tangled) implementations of
the four extensions to CSOM during a virtual machines course taught at the Hasso-
Plattner-Institut in summer 2006. We thank them for their contributions. We also
thank Tobias Pape for his ongoing work on CSOM.

References

[1] J. E. Smith and R. Nair. Virtual Machines: Versatile Platforms for Systems and
Processes. Morgan-Kaufmann, San Francisco, 2005.

[2] B. Alpern et al. The Jalapeño virtual machine. IBM Systems Journal, 39(1):211–
238, February 2000.

[3] http://jikesrvm.sourceforge.net/, accessed March 2008.

[4] http://java.sun.com/javase/technologies/hotspot/, accessed March 2008.

[5] S. Soman, C. Krintz, and D. F. Bacon. Dynamic selection of application-specific
garbage collectors. In ISMM ’04: Proceedings of the 4th International Symposium
on Memory Management, pages 49–60, New York, NY, USA, 2004. ACM.

[6] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. An
overview of AspectJ. In ECOOP ’01: Proceedings of the 15th European Conference
on Object-Oriented Programming, volume 2072 of LNCS, pages 327–353, London,
UK, 2001. Springer-Verlag.

[7] K. Gybels and J. Brichau. Arranging language features for more robust pattern-
based crosscuts. In AOSD ’03: Proceedings of the 2nd International Conference on
Aspect-Oriented Software Development, pages 60–69, New York, NY, USA, 2003.
ACM.

[8] R. Douence, P. Fradet, and M. Südholt. A framework for the detection and res-
olution of aspect interactions. In GPCE ’02: Proceedings of the 1st ACM SIG-
PLAN/SIGSOFT Conference on Generative Programming and Component Engi-
neering, volume 2487 of LNCS, pages 173–188, London, UK, 2002. Springer-Verlag.

24

http://jikesrvm.sourceforge.net/
http://java.sun.com/ javase/ technologies/ hotspot/

[9] C. Allan et al. Adding trace matching with free variables to AspectJ. In OOPSLA
’05: Proceedings of the 20th annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pages 345–364, New York,
NY, USA, 2005. ACM.

[10] C. Herzeel, K. Gybels, P. Costanza, C. De Roover, and T. D’Hondt. Forward
chaining in HALO: an implementation strategy for history-based logic pointcuts.
In ICDL ’07: Proceedings of the 2007 International Conference on Dynamic Lan-
guages, pages 157–182, New York, NY, USA, 2007. ACM.

[11] K. Ostermann, M. Mezini, and C. Bockisch. Expressive pointcuts for increased
modularity. In ECOOP ’05: Proceedings of the 19th European Conference on Object-
Oriented Programming, volume 3586 of LNCS, pages 214–240. Springer, 2005.

[12] E. Hilsdale and J. Hugunin. Advice weaving in AspectJ. In AOSD ’04: Proceed-
ings of the 3rd International Conference on Aspect-Oriented Software Development,
pages 26–35, New York, NY, USA, 2004. ACM.

[13] W. G. Griswold, K. Sullivan, Y. Song, M. Shonle, N. Tewari, Y. Cai, and H. Rajan.
Modular software design with crosscutting interfaces. IEEE Software, 23(1):51–60,
2006.

[14] J. Aldrich. Open modules: Modular reasoning about advice. In ECOOP ’05: Pro-
ceedings of the 19th European Conference on Object-Oriented Programming, volume
3586 of LNCS, pages 144–168. Springer, 2005.

[15] http://www.kaffe.org/, accessed March 2008.

[16] http://harmony.apache.org/, accessed March 2008.

[17] http://tinyvm.sourceforge.net/, accessed March 2008.

[18] http://java.sun.com/products/cldc/, accessed March 2008.

[19] E. Gagnon and L. Hendren. SableVM: a research framework for the efficient execu-
tion of Java bytecode. In JVM’01: Proceedings of the JavaTM Virtual Machine Re-
search and Technology Symposium, pages 27–40, Berkeley, CA, USA, 2001. USENIX
Association.

[20] http://sablevm.org/, accessed March 2008.

[21] http://lejos.sourceforge.net/, accessed March 2008.

[22] http://www.cs.purdue.edu/homes/jv/soft/ovm/index.html, accessed March
2008.

[23] P. F. Sweeney, M. Hauswirth, B. Cahoon, P. Cheng, A. Diwan, D. Grove, and
M. Hind. Using hardware performance monitors to understand the behavior of
Java applications. In VM’04: Proceedings of the 3rd Virtual Machine Research and

25

http://www.kaffe.org/
http://harmony.apache.org/
http://tinyvm.sourceforge.net/
http://java.sun.com/products/cldc/
http://sablevm.org/
http://lejos.sourceforge.net/
http://www.cs.purdue.edu/ homes/ jv/ soft/ ovm/ index.html

Technology Symposium, pages 57–72, Berkeley, CA, USA, 2004. USENIX Associa-
tion.

[24] M. Haupt. Virtual Machine Support for Aspect-Oriented Programming Languages.
PhD thesis, Darmstadt University of Technology, 2006.

[25] http://users.ugent.be/~badams/aspicere2/, accessed March 2008.

[26] B. Adams and K. De Schutter. An aspect for idiom-based exception handling:
(using local continuation join points, join point properties, annotations and type
parameters). In SPLAT ’07: Proceedings of the 5th Workshop on Software En-
gineering Properties of Languages and Aspect Technologies, pages 1–8, New York,
NY, USA, 2007. ACM.

[27] http://www.eclipse.org/aspectj/, accessed March 2008.

[28] R. Jones and R. Lins. Garbage Collection. Algorithms for Automatic Dynamic
Memory Management. Wiley, Chichester, 1996.

[29] http://www.unix.org/single_unix_specification/, accessed March 2008.

[30] B. Lewis and D. J. Berg. Threads Primer. A Guide to Multithreaded Programming.
Prentice Hall, Mountain View, 1996.

[31] R. Rashid, D. Julin, D. Orr, R. Sanzi, R. Baron, A. Forin, D. Golub, and M. B.
Jones. Mach: a system software kernel. In Proceedings of the 1989 IEEE Inter-
national Conference, COMPCON, pages 176–178, San Francisco, CA, USA, 1989.
IEEE Comput. Soc. Press.

[32] D. R. Engler, M. F. Kaashoek, and J. O’Toole. Exokernel: an operating system
architecture for application-level resource management. In SOSP ’95: Proceedings
of the fifteenth ACM Symposium on Operating Systems Principles, pages 251–266,
New York, NY, USA, 1995. ACM.

[33] D. Reed and R. Fairbairns. The Nemesis kernel overview. http://citeseer.ist.
psu.edu/reed97nemesis.html, 1997.

[34] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. Fiuczynski, D. Becker, S. Eg-
gers, and C. Chambers. Extensibility safety and performance in the SPIN operating
system. In SOSP ’95: Proceedings of the fifteenth ACM Symposium on Operating
Systems Principles, pages 267–283, New York, NY, USA, 1995. ACM.

[35] T. L. Harris. Extensible Virtual Machines. PhD thesis, Computer Laboratory,
University of Cambridge, UK, 2001.

[36] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler. The nesC
language: A holistic approach to networked embedded systems. In PLDI ’03: Pro-
ceedings of the ACM SIGPLAN 2003 Conference on Programming Language Design
and Implementation, pages 1–11, New York, NY, USA, May 2003. ACM.

26

http://users.ugent.be/ ~badams/ aspicere2/
http://www.eclipse.org/ aspectj/
http://www.unix.org/ single_unix_specification/
http://citeseer.ist.psu.edu/ reed97nemesis.html
http://citeseer.ist.psu.edu/ reed97nemesis.html

[37] P. Levis, S. Madden, D. Gay, J. Polastre, R. Szewczyk, A. Woo, E. Brewer, and
D. Culler. The emergence of networking abstractions and techniques in TinyOS.
In NSDI’04: Proceedings of the 1st Symposium on Networked Systems Design and
Implementation, pages 1–14, Berkeley, CA, USA, 2004. USENIX Association.

[38] J. Fassino, J. Stefani, J. Lawall, and G. Muller. Think: A software framework
for component-based operating system kernels. In ATEC ’02: Proceedings of the
General Track of the Annual Conference on USENIX Annual Technical Conference,
pages 73–86, Berkeley, CA, USA, 2002. USENIX Association.

[39] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying distributed software
architectures. In W. Schafer and P. Botella, editors, Proceedings of the 5th European
Software Engineering Conference (ESEC 95), volume 989 of LNCS, pages 137–153,
Sitges, Spain, 1995. Springer-Verlag, Berlin.

[40] J. Aldrich, C. Chambers, and D. Notkin. ArchJava: connecting software archi-
tecture to implementation. In ICSE ’02: Proceedings of the 24th International
Conference on Software Engineering, pages 187–197, New York, NY, USA, 2002.
ACM.

[41] M. Pinto, L. Fuentes, and J. M. Troya. DAOP-ADL: an architecture description
language for dynamic component and aspect-based development. In GPCE ’03:
Proceedings of the 2nd International Conference on Generative Programming and
Component Engineering, volume 2830, pages 118–137. Springer, 2003.

[42] A. Taivalsaari. Implementing a Java(TM) Virtual Machine in the Java Programming
Language. Technical Report SMLI TR-98-64, Sun Microsystems, M/S MTV29-01,
901 San Antonio Road, Palo Alto, CA 94303-4900, 1998.

[43] G. Thomas, F. Ogel, A. Galland, B. Folliot, and I. Piumarta. Building a flexible
Java runtime upon a flexible compiler. International Journal of Computers and
Applications, 27(1):27–34, 2005.

[44] M. Cierniak, M. Eng, N. Glew, B. Lewis, and J. Stichnoth. The Open Runtime
Platform: A flexible high-performance managed runtime environment. Concurrency
and Computation: Practice and Experience, 17(5–6):617–637, 2005.

27

Figures

List of Figures

1 Directory structure of C-based VMs. 29
2 Directory structure of Java-based VMs highlighting core services. The

legend provides a list of core services, which are mapped to the imple-
mentation directory location(s). 29

3 Tangled VM architecture. 30
4 (a) Exposing “points of interest” from service modules using pointcuts.

(b) Disentangled VM architecture achieved by coordinating points of in-
terest exposed from service modules. 30

5 High-level service architecture of the CSOM VM: (a) in terms of services
and (b) in terms of implementation and header files. CSOM consists of
an interpreter, object model, memory management and universe. 30

6 High-level service architecture of the CSOM VM with reference counting:
(a) tangled implementation and (b) VMADL implementation. CSOM
consists of an interpreter, object model, memory management and universe.
Grey nodes correspond to changed service implementations compared to
the CSOM architecture in Fig. 5(a), dashed edges denote new dependen-
cies, and dotted edges represent advice relations. 31

7 High-level service architecture of the CSOM VM with native threading:
(a) tangled implementation and (c) VMADL implementation. CSOM con-
sists of an interpreter, object model, memory management and universe.
Grey nodes correspond to changed service implementations compared to
the CSOM architecture in Fig. 5(a), dashed edges denote new dependen-
cies, and dotted edges represent advice relations. 31

28

Figure 1: Directory structure of C-based VMs.

Figure 2: Directory structure of Java-based VMs highlighting core services. The leg-
end provides a list of core services, which are mapped to the implementation
directory location(s).

29

Virtual Machine

Application

Representation Scheduling

Memory
Management

Adaptive
Optimization

OS Interface

Execution

Figure 3: Tangled VM architecture.

Service Module Virtual Machine

Application
Memory
Management

Representation

Adaptive
Optimization

Scheduling

OS Interface

Execution

(a) (b)

advice invocation, join point expositionexecution pathpointcutjoin point module advice

Figure 4: (a) Exposing “points of interest” from service modules using pointcuts. (b)
Disentangled VM architecture achieved by coordinating points of interest ex-
posed from service modules.

int

obj

univ

mem

(a)

int.h

obj.h

univ.h mem.h

int.c obj.cuniv.c mem.c

(b)

Figure 5: High-level service architecture of the CSOM VM: (a) in terms of services
and (b) in terms of implementation and header files. CSOM consists of an
interpreter, object model, memory management and universe.

30

int

obj

univ

mem

(a)

int

obj

univ

mem

(b)

Figure 6: High-level service architecture of the CSOM VM with reference counting: (a)
tangled implementation and (b) VMADL implementation. CSOM consists
of an interpreter, object model, memory management and universe. Grey
nodes correspond to changed service implementations compared to the CSOM
architecture in Fig. 5(a), dashed edges denote new dependencies, and dotted
edges represent advice relations.

int

obj

univ

mem

nat

(a)

int

obj

univ

mem

nat

(b)

Figure 7: High-level service architecture of the CSOM VM with native threading: (a)
tangled implementation and (c) VMADL implementation. CSOM consists
of an interpreter, object model, memory management and universe. Grey
nodes correspond to changed service implementations compared to the CSOM
architecture in Fig. 5(a), dashed edges denote new dependencies, and dotted
edges represent advice relations.

31

	Introduction
	An Analysis of Decomposition in Virtual Machines
	System Decomposition
	Service Representation
	Service Interaction

	Disentangled Virtual Machine Architecture
	Architectural Approach
	Applied Disentangling

	Case Study
	CSOM
	VMADL Applied to CSOM
	Garbage Collection in CSOM
	Multithreading in CSOM

	Discussion

	Related Work
	Summary

