
Aspect mining in the presence of the C preprocessor

Bram Adams
Herman Tromp

GH-SEL, INTEC, Ghent
University

Sint-Pietersnieuwstraat 41
B-9000 Ghent, Belgium

{bram.adams,herman.tromp}@ugent.be

Bart Van Rompaey
LORE, University of Antwerp

Middelheimlaan 1
B-2020 Antwerpen, Belgium

bart.vanrompaey2@ua.ac.be

Celina Gibbs
Yvonne Coady

MOD Squad
University of Victoria

Canada
{celinag,ycoady}@cs.uvic.ca

ABSTRACT
In systems software, the C preprocessor is heavily used to man-
age variability and improve efficiency. It is the primary tool to
model crosscutting concerns in a very fine-grained way, but leads
to extremely tangled and scattered preprocessor code. In this pa-
per, we explore the process of aspect mining and extraction in the
context of preprocessor-driven systems. Our aim is to identify both
opportunities (extracting conditional compilation into advice) and
pitfalls (mining on unpreprocessed code) in migrating preprocessor
code to aspects. We distill five trade-offs which give a first impres-
sion about the usefulness of replacing the preprocessor by aspects.
Preprocessor-driven systems prove to be a real challenge for aspect
mining, but they could become on the other hand one of the most
promising applications of AOP.

1. INTRODUCTION
Systems software manages and controls the hardware to support

the tasks of application software. Over the years, a body of large,
long-living systems has accumulated, entailing operating systems,
device drivers, compilers, virtual machines, etc. Many of these
systems have configurable parameters built into the source code
to tailor the product to one specific hardware platform or to allow
different variants to be composed. Usually, such systems are devel-
oped in C/C++, with the C preprocessor handling this variability.
Typically, these preprocessor constructs are cross-cutting concerns,
scattered and/or tangled in the program.

Most current aspect mining approaches are geared towards mod-
ern OO languages like Java or Smalltalk. Bruntink et al. [5, 4],
however, deal with a large C code base in which five known pro-
gramming idioms for error handling, logging, etc. are prime can-
didates for refactoring into aspects. Those idioms involve the use
of standard function-like macros (only one of the three preproces-
sor constructs), but it turns out that automatic aspect refactoring of
macro expansion is severely hampered by inconsistent application
of the macros [4]. Bruntink et al. have found that the huge num-
ber of extracted advice variants combined with the high need for
advice context diminishes AOP’s benefits in localising crosscutting
behaviour in this case. We are interested to find out whether these

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
LATE ’08 Brussels, Belgium
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

findings can be generalised to preprocessor usage in general.
After summarising the three important preprocessor constructs

(Section 2), this paper looks in more detail at aspect mining and
refactoring in preprocessor-driven source code (Section 3). We
consider this topic in an exploratory way to highlight challenges
ahead and to consider currently existing solutions for subproblems.
More in particular, in Section 4 we illustrate how traditional as-
pect mining techniques which operate on preprocessed code, and
preprocessor-aware mining techniques relate to each other. From
our exploration, we distill five trade-offs which give a first indica-
tion about the feasibility of using aspects instead of the preproces-
sor (Section 5). Finally, Section 6 presents our conclusions.

2. THE C PREPROCESSOR
The cpp is a simple, but powerful tool which lives in a symbiotic

relation with the C compiler. Many shortcomings of the C language
can be resolved with preprocessor directives. However, its great
flexibility and the fact that it does not respect the C syntax rules
make cpp a potential source of suboptimal coding practices and
may cause confusion [19]. cpp is a necessary evil for every C
programmer and maintainer. Even the advent of C++, which solves
many shortcomings of C which previously had to be handled with
preprocessor directives, did not eradicate the use of cpp from the
programmer’s tool box [16].

From the program understanding view point, cpp complicates
the analysis of source code considerably. The programmer actually
writes two programs: the cpp program and the C program. The re-
sult of the cpp program can be one of a multitude of C programs.
Someone wanting to parse a system for program understanding pur-
poses has two options: either choose one particular configuration
and parse the preprocessed code for that configuration, or make the
parser more robust so that it understands the unpreprocessed code,
which does not have to be valid C.

In particular, the cpp introduces the following constructs:
#define Macro definition and expansion. cpp understands the

directives define and undef for the definition of macros.
Macros are commonly distinguished based on whether they
require parameters (function-like) or not (object-like).

#include Copy mechanism traditionally used to emulate a mod-
ule/interface system. The referenced files are pasted literally
inline. File inclusion usually introduces declarations of func-
tions or types into a source file.

#ifdef Conditional compilation is used for parametrisation of
source code based on the build-time configuration.

Standalone analysis of the C preprocessor has been well-studied.
Ernst et al. [8] have measured that on average 8.4% of lines of
source code contains preprocessor directives. Conditional compi-
lation takes up 48% of these, macro definitions 32% and file in-

1 #define SWAP_BYTES(a) \
2 ((((a) << 8) & 0xff00) | 0x00ff) \
3 & (((a) >> 8) | 0xff00)

Figure 1: Macro definition in zip.cpp.

clusion 15%. 25% of the source code contains macro expansions
while 37% is controlled by conditional compilation logic. Condi-
tional compilation is especially popular for managing portability of
an application (37% of its usage patterns) and for avoiding acciden-
tal redefinition of a preprocessor flag (17%).

In addition to heavy usage, preprocessor-driven source code is
plagued by understandability problems caused by complicated macro
bodies, side-effects and dynamic scoping, unsafe and inconsistent
usage, multiple definitions, etc. The fine-grainedness of conditional
compilation at the same time is its biggest enemy, as source code
rapidly becomes a maze in which normal program flow is hard
to distinguish from (often nested) conditional compilation checks.
Often, similar conditionally compiled code segments can be seen
scattered throughout the system. Singh et al. claim that for these
reasons conditional configuration code could be extracted into as-
pects [17]. Based on case studies with their configuration browser
(C-CLR), they state that “The problems associated with condition-
ally compiled configurations include redefined macros, non-reusable
configuration code, and non-explicit representation of configura-
tion compositions”. This paper explores the process of automatic
mining and extraction of aspects from preprocessor code.

3. ASPECT MINING IN PRESENCE OF PRE-
PROCESSOR

In this paper, we make a couple of assumptions. First, we pre-
sume that the intended goal is to replace preprocessing constructs
as much as possible by aspects. As an alternative, variability could
be made a responsibility of the build system or be delayed until
run-time, but we do not consider this.

Furthermore, we do not consider “undisciplined” or “dirty” pre-
processor usage, i.e. preprocessor usage which defies C’s scoping
or syntax rules. This is in line e.g. with Garrido et al.’s work [9].
They only allow preprocessor directives on statements, declara-
tions, structure fields, enumerator values and array initialiser val-
ues. Ernst et al. [8] point out that roughly two thirds of preprocessor
usage corresponds to such simple patterns. This excludes amongst
others conditional compilation of parts of tokens or macros which
contain incomplete syntactic structure. For such undisciplined pre-
processor usage, Baxter et al. [3] even claim that “The reaction of
most staff to this kind of trick is first, horror, and then second, to
insist on removing the trick from the source”.

With these assumptions in mind, we can consider the implica-
tions of using AOP on each preprocessor directive.

Macros. Many macros behave like inline function definitions.
The SWAP_BYTES macro (Figure 1) of the HotSpot VM1, e.g.,
swaps the bytes2 of the variable passed on as parameter a. This
functionality is used throughout the VM just like an ordinary func-
tion, but it has been expressed as a macro for performance reasons.

If existing aspect mining techniques like fan-in [14] or clone de-
tection [5] would accept unpreprocessed source code, occurrences
of (unexpanded) macro expansions could become (part of) candi-
date seeds and possibly end up inside the extracted advice body. As
long as the candidate seeds correspond to valid C code segments,

1All our examples are drawn from this VM implementation.
2This behaviour is only defined if a has an integer type.

1 #ifdef LOG_THREADS
2 dprintf(2, "[Suspending fromtid = %ld,
3 tid = %ld, pid = %d, count = %d]\n",
4 pthread_self(), tid->sys_thread,
5 tid->lwp_id, count);
6 #endif

Figure 2: Conditional compilation (C1) in threads_linux.c.

1 JNIEXPORT jlong JNICALL
2 Java_sun_awt_X11GraphicsDevice_getDisplay(
3 JNIEnv *env, jobject this){
4 #ifdef HEADLESS
5 return NULL;
6 #else
7 return (jlong) awt_display;
8 #endif /* !HEADLESS */
9 }

Figure 3: Conditional compilation (C2) in
awt_GraphicsEnv.c.

they may even contain expansions of undisciplined macros them-
selves. The only caveat is that the extraction of advice from these
seeds will be more complex, as all involved macro definitions, free
variables, etc. will have to be extracted too.

File Inclusion. File inclusion is special, as opportunities for ex-
tracting inclusion into advice are rare. An example would be the
case where each file needs to include a common header file with
debugging macros. A dedicated advice construct for file inclusion
would be needed in this (rare) case. The advice construct as we
know it cannot be used to include a header file, as included files
may contain type or function declarations.

Conditional compilation. Conditional compilation is the most
interesting construct, as it causes most program understanding prob-
lems. It enables build-specific variants of the source code, i.e.
preprocessed code corresponds to one particular build configura-
tion. Aspect mining should be performed on unpreprocessed source
code, because otherwise the identified aspects would not be appli-
cable in all build environments.

To simplify the discussion, we have distilled five important cate-
gories of conditional compilation usage in the HotSpot VM:
C1 A recurring conditional compilation block which is scattered

around the code base just to add some extra code. A typical
example is logging, as exemplified in Figure 2. This particu-
lar logging block occurs nine times in the HotSpot VM.

C2 A recurring conditional compilation block which is scattered
around the code base to replace some code. The example of
Figure 3 shows a compilation block which manages the Java
windowing libraries in a headless environment.

C3 A recurring conditional compilation blocks extending existing
conditional branch structures. In Figure 4, we notice how an
additional case statement is added (at multiple places).

C4 A preprocessor #if-#elif-#else block is a variation point for a
changing target platform, e.g. the operating system. Each
block represents an alternative implementation. In Figure 5,
every conditional block encapsulates a function.

C5 Conditional blocks can be nested freely. As a complex exam-
ple, consider the multitude of combinations in awt.h be-
cause of nested conditional compilation (Figure 6).

It is important to note that an aspect candidate may be involved
in multiple categories of interactions, e.g. because of nested con-
ditional compilation. Some cases like C1 and C5 are clearly as-
pect candidates. Modularising the conditional code will clearly im-

1 #if !defined KCMS_NO_CRC
2 case ’c’:
3 fd->fd.crc32 = 0xFFFFFFFFL;
4 fd->type = KCMS_IO_CALCCRC;
5 break;
6 #endif

Figure 4: Conditional compilation (C3) in
awt_GraphicsEnv.c.

1 #if defined (KPWIN16)
2 void FAR KpSleep (KpUInt32_t ms,KpInt32_t d){
3 /*Windows 16 bit implementation*/
4 }
5 #elif defined (KPWIN32)
6 void FAR KpSleep (KpUInt32_t ms,KpInt32_t d){
7 /*Windows 32 bit implementation*/
8 }
9 ...

10 #else
11 void FAR KpSleep (KpUInt32_t ms,KpInt32_t d){
12 /*generic implementation*/
13 }
14 #endif

Figure 5: Conditional compilation (C4) in sync.c.

prove program understanding. An alternative for C1 could be to
extract the code into a function and call it instead. At first sight,
C2 does not seem to be a straightforward aspect candidate. How-
ever, it is easy to imagine around-advice which nullifies the return
value of the procedures in which the conditional logic resides. C4
could be tackled by delegating the conditional logic to the build
system, i.e. by moving all procedures of a given platform into a
dedicated file and by making the build decide which one to com-
pile. However, this may lead to an exponential number of files be-
cause of the arbitrary nesting of configuration checks, and because
it delegates important knowledge of configuration constraints to the
build system, which faces serious understandability problems on its
own [1]. Alternatively, one could extract different procedure defi-
nitions into separate around-advices, of which the pointcut depends
on the build system configuration. Finally, C3 is the most compli-
cated example, as it requires fine-grained join points on conditional
branches. This is a good example of the fine-grained nature of typ-
ical preprocessor usage. The overall challenge of aspect mining in
preprocessor-driven code is to take into account all possible builds
which can emerge from the unprocessed code.

4. MINING AND REFACTORING PROCESS
Now that we have identified the possible applications of AOP on

the three preprocessor constructs, we take a look at the general pro-
cess of aspect mining and refactoring in preprocessor-driven source
code. We do this chronologically, starting with mining activities
and then considering refactoring.

4.1 Aspect mining
Detection of seeds Standard mining approaches [11] can be used

to discover candidate seeds in preprocessor-driven code, but they
should be amended to work on unpreprocessed code. This is not
as straightforward as it sounds, because all three preprocessor con-
structs can abstract over irregular programming constructs, like in-
complete function definitions, partial struct declarations, etc. Hence,
parsers need to be robust with reference to the program’s structure.
Vidács and Beszédes [21] describe a schema for storing parsed pre-
processor information that enables to extract the original source

1 #ifdef NETSCAPE
2 #else /* ! NETSCAPE */
3 #ifdef DEBUG_AWT_LOCK
4 #ifndef XAWT
5 #ifdef JNI_AWT_LOCK
6 #else /* ! JNI_AWT_LOCK */
7 #endif /* ! JNI_AWT_LOCK */
8 #else /* XAWT */
9 #endif

10 #else /* ! DEBUG_AWT_LOCK */
11 #ifdef JNI_AWT_LOCK
12 #else /* ! JNI_AWT_LOCK */
13 #endif /* ! JNI_AWT_LOCK */
14 #endif /* ! DEBUG_AWT_LOCK */
15 #endif /* ! NETSCAPE */

Figure 6: Conditional compilation directives (C5) in awt.h.

code from such a model again. Spinellis’ CScout [20] uses the
concept of “token equivalence classes” to link back the occurrences
of identifiers in preprocessed code to the unpreprocessed version.
Somé [18] uses the naive approach of parsing all possible paths,
but is able to speed things up with some heuristics. Finally, Mc-
Closkey et al. [15] have proposed an AST-based replacement macro
language called “ASTEC”.

Fan-in analysis would be useful for detecting scattered macro
expansions, as those can be interpreted as normal function calls.
As the SWAP_BYTES function-like macro of Figure 1 is expanded
51 times by three implementation files, these usage sites can be
considered an aspect candidate based upon the fan-in principles.

Conditional compilation regions on the other hand could be iden-
tified more easily by e.g. clone detection tools. CCFinder3 [10] is a
clone detection tool which is able to work on unpreprocessed code.
The C1 and C2 examples on Figure 2 and 3 respectively could be
identified like this, because they occur in many places with only
minor variations. C4 (Figure 5) is different, as the various platform-
specific code pieces deviate quite a bit from each other. This means
that the duplication detection tool needs to be robust with reference
to local modifications.

Any conditional region which is not flagged as scattering, should
still be considered as a possible tangled seed. Human intervention
needs to decide whether it really gives rise to tangling or not.

Categorisation of seeds. Once interesting candidate seeds have
been found, an extra (automated) step is required to find out whether
candidate seeds involve conditional compilation directives or not.
If they are, this means that the seed is highly dependent on build-
time configuration info. The role of this info inside the seed can
vary, and this can influence the difficulty of expanding the seed and
of extracting useful advice from it.

Fortunately, categorising the seeds can be done automatically.
It involves checking whether seeds cross conditional compilation
region boundaries or not. Based on our analysis in Section 3, there
are only three categories of seeds: external (Figure 7a), internal
(Figure 7b) and cross (Figure 7c).

“External” seeds do not contain any conditional compilation seg-
ment, similar to the situation traditional aspect mining approaches
encounter. The seeds may refer to macros or file inclusion, in which
case these will end up inside the extracted advice. The extracted
aspect will have to be processed by the preprocessor before the
weaver can do its work. This is no distractor, as it is especially
conditional compilation which threatens program understanding.

At the other extreme, “internal” seeds are located completely in-
side conditional compilation segments, cf. C1 up to C4. These

3
http://www.ccfinder.net/

1 int i=666;
2 .../* no conditional compilation */
3 int a=f(i,"bla");

(a)

4 #ifdef LINUX
5 int i=666;
6 .../* no constraints */
7 int a=f(i,"bla");
8 #endif

(b)

9 int i=666;
10 #ifdef LINUX
11 .../* no constraints */
12 int a=f(i,"bla");
13 #endif

(c)

Figure 7: Three categories of seeds: (a) external, (b) internal and (c) cross.

are prime targets for aspect refactoring, as they either disappear
in the resulting application or are compiled in. In the advent of
nested conditional compilation (C5), things get more complicated.
The easiest technique would be to extract all the code found within
the outermost conditional compilation guards into an advice body.
However, the advice would then contain conditional compilation
logic, and hence obfuscated program flow. Another approach would
be to take into account (inclusion [8]) dependencies between con-
ditional compilation flags and extract each possible path of pre-
processor conditions into a single advice body. Each of these has
an associated logic formula denoting the right combination of pre-
processing conditions (Section 4.2). This approach may lead to
code duplication if the outermost conditional compilation region
contains unconditional code besides the inner conditional region,
because every extracted advice body would contain a copy of this.

Finally, there is the hybrid category of “cross” seeds, i.e. seeds
which are partially located in- and outside of conditional logic (Fig-
ure 7c). Naive refactoring into advice leads to advice bodies with
conditional compilation within them. People should decide whether
or not this is an improvement over the old situation. If not, the sit-
uation is similar to the one for “internal” seeds.

User interaction. At this point, the user should intervene. First,
the miner should filter out false positives among the seeds, as all
mining approaches have a precision of less than 100% [11]. One
should also decide whether “internal” and “cross” seeds are desir-
able as is (with internal conditional compilation logic) or whether
an extra finer-grained mining iteration should be performed to iden-
tify all possible conditional paths instead. Finally, humans should
determine the specific (semantic) concern of the retained seeds (if
any) and probably expand the candidate seeds into self-contained
concern seeds [6]. Note that the name of preprocessor flags guard-
ing conditional compilation regions does not necessarily correspond
to the actual concern implemented by the conditional code. Ernst
et al. [8] did assume this, but we have found some cases in the
HotSpot VM where this was not the case.

Clearly, IDE support is indispensable in this step. More sophisti-
cated support is required than traditional aspect mining techniques
provide. Code with conditional compilation is hard to understand
and so are “internal” and “cross” seeds. Even worse, some of the
seeds could correspond to dead code if the particular configuration
never occurs. It suffices to know the preconditions under which
a seed normally is included in the build [13], i.e. the combina-
tion of (un)defined preprocessor flags to activate the seed. This
knowledge enables the IDE to partially preprocess the source code
such that only unknown flags are retained. Unselected code can be
grayed out to enable users to better assess the seed and its associ-
ated program context [12, 17]. Of course, multiple sequences of
preprocessor flag values can satisfy the precondition, so the human
miner should be able to browse through all possible configurations
or to at least understand the common configuration conditions.

This approach only works if one knows the exact preconditions
under which conditionally guarded code is active. Latendresse [13]
has proposed a fast (O(SLOC)) algorithm for this, which deter-

1 JNIEXPORT jlong JNICALL nogui() around Jp:
2 execution(Jp,‘‘Java_sun_awt_..._getDisplay’’)
3 && headless(_){
4 return NULL;
5 }

Figure 8: Advice extracted from Figure 3 (C2).

mines for every source code line the active conditions in terms of
externally defined preprocessor flags. In addition, knowledge of
actual builds could filter out infeasible configurations. Calculating
this information via symbolic evaluation seems too expensive [13].

4.2 Aspect refactoring
Once suitable seeds have been identified and expanded, it is time

to extract them into fully equipped advice [11] and to remove their
traces in the base code. We discuss these issues in the context of
preprocessor-driven source code.

Advice body extraction. In the case of behavioural crosscutting
and with our assumptions in mind, body extraction boils down to
the usual extraction process in preprocessor-unaware approaches.
In practice, one needs a preprocessor-aware refactoring environ-
ment to perform the extraction with sufficient confidence [22, 9,
15]. It is known that subtle variations in the implementation of con-
cerns make this step tedious, and will likely need refactoring of the
code prior to extraction [4]. However, contrary to “external” seeds,
“internal” and “cross” seeds usually are manifestations of tangling
instead of scattering, because the preprocessor’s fine-grainedness
invites one-off adaptations or specific changes tailored for a par-
ticular configuration, similar to Colyer et al.’s notion of “heteroge-
neous concerns” [7]. The fine-grained usage patterns require new,
lower-level AOP constructs to successfully apply aspects.

One frequent case is that various conditionally compiled code
segments within the same function depend on common conditions,
as if conditional logic is interleaved with the base code. A naive
extraction would result in as many advice bodies as there are con-
ditional segments. Temporal pointcut languages which allow to
advise each step of a sequence would be better. Another possibil-
ity would be to coalesce all seeds from within the same function
together in one advice and introduce a kind of labeled proceed-
statement. Viability of such a multi-exit advice body is unknown.

Conditional branches in switch-statements are another inter-
esting phenomenon (C3 on Figure 4). Converting these to ad-
vice is not straightforward. A dedicated switch-pointcut is very
implementation-dependent, and the corresponding join points would
be hard to identify. Advising the enclosing execution join point if
its return value has a certain value, is not possible in general either.
There does not seem to be a straightforward way to model this.

Even in the case of more “regular” crosscutting, extraction of ad-
vice is not trivial. In the example of Figure 3, the aspect miner has
to decide which conditional branch represents the main concern.
In the extracted advice4 of Figure 8, we have opted for modularis-

4This advice is expressed in terms of the Aspicere aspect language for C [23].

ing the “headless” concern as an aspect. Hence, the around-advice
(line 1) overrides the behaviour of the execution (line 2) of the
procedure of Figure 3 by returning NULL (line 4). Optimisation of
the woven code eliminates any run-time overhead in this case, such
that the resulting code is equivalent to the preprocessed code.

For static crosscutting, quantified inter-type declaration is re-
quired, which exploits build-time configuration. Universal intro-
duction of data fields (like in AspectJ) does not suffice.

Context extraction. Extraction of advice or data structure bod-
ies is not enough, as the seeds’ inputs and outputs have to be deter-
mined as well [2]. Preprocessor-driven source code introduces new
challenges for this. Macro definitions can refer to any variable they
want, as the exact references depend on the context in which the
macro is expanded. This is actually “accidental” variable captur-
ing, or some kind of dynamic scoping. When calculating the right
context, the extraction algorithm should take macro definitions into
account, possibly by implicitly expanding the macros in the seeds.
A similar approach is needed when processing a seed containing
file inclusion, and for conditional compilation. In the advice of
Figure 8, no such context is needed. If the “non-headless” case had
been extracted into the advice, the global awt_display should
have been captured as context for the advice.

Pointcut deduction. Pointcuts of “external” and “cross” seeds
can be derived via enumeration, logic induction, etc. For “internal”
seeds, a very fine-grained, configuration-aware pointcut model is
required. The first requirement follows from the theoretically unre-
stricted scope of preprocessor constructs. Any (part of a) statement
can be conditionally compiled or used for a macro expansion. This
even extends to type definitions. Being able to identify join points
on such a small scale is crucial to succeed.

The requirement for configuration-aware pointcuts follows from
the observation that an “internal” seed is identified by a physical
location (actually a run-time event) and a logic formula which de-
scribes the specific configuration under which the seed would nor-
mally be compiled in. The former corresponds to the traditional
notion of pointcut, but the latter is an extra refinement of the point-
cut, determined exclusively by build-time configuration informa-
tion. As such, pointcut languages should be able to take this infor-
mation into account. Aspicere [23] e.g. is able to incorporate build
knowledge as logic facts available to the pointcut and advice. As an
example, the pointcut of Figure 8 (line 3) requires the HEADLESS
compiler constant to be defined.

Removal of tangled code. The final step is to remove the orig-
inal tangled code from the base code. In the example of Figure 3,
only line 7 should be retained in the procedure body. Usually, this
extraction step is performed manually, as automatic treatment is
only possible if the seeds are uniform enough [4]. Only powerful
refactoring support may be able to help.

There may be an easier way, however, in the form of partial eval-
uation of conditionally compiled code [3]. One could specialise the
code in the areas where seeds have been extracted by (un)defining
the relevant flags and leaving the others as is. Unneeded code
would automatically disappear. This is not entirely bullet-proof,
as unrelated code could be damaged if conditional flags would be
preprocessed there by accident.

Just as in preprocessor-unaware systems, removal of tangled code
and integration of the new aspects should be performed gradually in
the presence of integration tests. Otherwise, new bugs could be at-
tributed to either of both actions. Unfortunately, the configuration-
dependent parts of the generated pointcuts in theory require thor-
ough testing of all possible configurations. This is impossible to
achieve in general, hence some clever heuristics are needed.

5. DISCUSSION
We can now comment on the fundamental question whether or

not aspects are capable of replacing preprocessor code, and if they
are, whether it is worth the effort. There are five important trade-
offs one needs to consider before answering this question.

One of the most important factors is the code base itself, or rather
the way in which the preprocessor is used. If disciplined, function-
like macro expansion is used, or “inline seeds” cleanly encapsulate
unconditional code, tools have a much better time because of the
high degree of structure in the code. In the opposite cases, only
manual approaches are viable.

Another trade-off regards AOP’s promise of modularity. Ad-
vice is capable of modularising disciplined crosscutting conditional
logic, while making the configuration conditions explicit. Given
that conditional compilation frequently gives rise to tangling rather
than scattering, this means that there will be many small one-to-one
advices. Reuse of advice across multiple join points is less likely.
This clearly defies the new modularity, as aspects become much too
long and hence harder to understand.

Another factor compromising reuse are the finer-grained aspect
constructs mentioned on many occasions in this paper. They in-
deed would make modeling preprocessor constructs easier, but at
the same time they would introduce extra dependencies on imple-
mentation details in the base code. This leads to fragile pointcuts,
but also reduces reuse opportunities. The only way to avoid this,
is to program aspect-aware (non-oblivious) in the sense of keeping
the code base as structured as possible without abusing the prepro-
cessor. Of course, this has no effect in legacy systems, which de
facto consists of heaps of existing code.

Preprocessor directives have some desirable properties which as-
pects do not share. Preprocessor code does not introduce any run-
time penalty, nor does it inflate the resulting binary. The use of
aspects on the other hand introduces a certain performance penalty
in the build process [23] which can have a much larger impact than
the fast string processing it replaces. As such, the increase in mod-
ularisation results in a sacrifice of build performance. Also, using
current aspect technology, the build result (i.e. the woven applica-
tion) will more than likely result in a bigger executable and slower
run-time performance, although static optimisation techniques can
eliminate many redundant instructions.

Finally, system developers are typically preprocessor experts, yet
not familiar with the principles of AOP. One can expect a steep
learning curve to adopt aspects and associated tools. Note that most
macro refactoring tools are not fully automatic either, and also re-
quire user assistance [15]. Related to this trade-off is the question
whether or not normal developers should be able to write aspects,
or that they instead should follow special coding guidelines to trig-
ger aspects which have been imposed by a select group of aspects
experts. There is no clear answer yet.

To summarise, there are still many subproblems to be solved be-
fore people who are willing to give up the preprocessor for aspects
will be able to do so.

6. CONCLUSION
We have explored the process of mining and extracting aspects

in the context of preprocessor-driven systems, with examples from
a large, real-world system. Conditional compilation in particular is
amenable to aspect extraction. Unfortunately, the interaction, nest-
ing and fine-grainedness of preprocessor directives complicate the
identification of separable concerns and the subsequent extraction,
and we have also observed the need for new AOP constructs. We
have identified how duplication detection as well as preprocessor-

aware parsing are invaluable during aspect mining, and can rely on
the many tools developed during research in preprocessing analy-
sis and refactoring. Based on our exploration, we have distilled five
trade-offs which give a tentative first idea about viability of replac-
ing the preprocessor by aspects in a particular code base.

7. QUESTIONS
We do not propose one concrete technique, but consider aspect

exploration, extraction and evolution in preprocessor-driven code
in general. We need to mine unpreprocessed code to identify all
seeds related to conditionally compiled concerns and macro expan-
sions. Extraction of pointcuts could be done by calculating the con-
ditions under which conditionally compiled code is (in)active. Ad-
vice extraction needs to take into account free variables, macro def-
initions, etc. Guaranteeing behaviour preservation is difficult, be-
cause all feasible build configurations should be tested. The fragile
pointcut problem is a concrete risk because of the fine-grainedness
of preprocessor directives. However, we believe that our technique
leads to better evolvable base code because it becomes decoupled
from the complex conditional compilation flow.

Acknowledgements
Bram Adams is supported by a BOF grant from Ghent University.

8. REFERENCES
[1] B. Adams, K. De Schutter, H. Tromp, and W. D. Meuter.

Design recovery and maintenance of build systems. In Proc.
of the 23rd International Conference on Software
Maintenance (ICSM), Paris, France, October 2007.

[2] E. L. A. Baniassad and G. C. Murphy. Conceptual module
querying for software reengineering. In Proc. of the 20th
International Conference on Software Engineering (ICSE),
pages 64–73, Kyoto, Japan, April 1998.

[3] M. Baxter, I.D.; Mehlich. Preprocessor conditional removal
by simple partial evaluation. In Proc. of the 8th Working
Conference on Reverse Engineering (WCRE), pages
281–290, Stuttgart, Germany, 2001.

[4] M. Bruntink, A. van Deursen, M. D’Hondt, and T. Tourwé.
Simple crosscutting concerns are not so simple: analysing
variability in large-scale idioms-based implementations. In
Proc. of the 6th International Conference on
Aspect-Oriented Software Development (AOSD), pages
199–211, Vancouver, BC, Canada, March 2007.

[5] M. Bruntink, A. van Deursen, T. Tourwé, and R. van
Engelen. On the use of clone detection for identifying
crosscutting concern code. IEEE Trans. Softw. Eng.,
31(10):804–818, 2005.

[6] M. Ceccato, M. Marin, K. Mens, L. Moonen, P. Tonella, and
T. Tourwé. Applying and combining three different aspect
mining techniques. Software Quality Control,
14(3):209–231, 2006.

[7] A. Colyer and A. Clement. Large-scale AOSD for
middleware. In Proc. of the 3rd international conference on
Aspect-Oriented Software Development (AOSD), pages
56–65, Lancaster, UK, 2004. ACM.

[8] M. D. Ernst, G. J. Badros, and D. Notkin. An empirical
analysis of C preprocessor use. IEEE Trans. Softw. Eng.,
28(12):1146–1170, 2002.

[9] A. Garrido. Program Refactoring in the Presence of
Preprocessor Directives. PhD thesis, Univ. of Illinois at
Urbana-Champaign, Aug. 2005.

[10] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: a
multilinguistic token-based code clone detection system for
large scale source code. IEEE Trans. Softw. Eng.,
28(7):654–670, 2002.

[11] A. Kellens, K. Mens, and P. Tonella. A survey of automated
code-level aspect mining techniques. Transactions on
Aspect-Oriented Software Development, IV(LNCS
4640):143–162, 2007.

[12] B. Kullbach and V. Riediger. Folding: An approach to enable
program understanding of preprocessed languages. In Proc.
of the Eighth Working Conference on Reverse Engineering
(WCRE), page 3, Stuttgart, Germany, 2001. IEEE Computer
Society.

[13] M. Latendresse. Fast symbolic evaluation of C/C++
preprocessing using conditional values. In Proc. of the 7th
European Conference on Software Maintenance and
Reengineering (CSMR), page 170, Benevento, Italy, 2003.
IEEE Computer Society.

[14] M. Marin, A. van Deursen, and L. Moonen. Identifying
aspects using fan-in analysis. In Proc. of the 11th Working
Conference on Reverse Engineering (WCRE), pages
132–141, Delft, The Netherlands, November 2004.

[15] B. McCloskey and E. Brewer. ASTEC: a new approach to
refactoring C. SIGSOFT Softw. Eng. Notes, 30(5):21–30,
2005.

[16] C. A. Mennie and C. L. Clarke. Giving meaning to macros.
In Proc. of the 12th IEEE International Workshop on
Program Comprehension (IWPC), pages 79–85, Bari, Italy,
2004. IEEE Computer Society.

[17] N. Singh, C. Gibbs, and Y. Coady. C-CLR: A tool for
navigating highly configurable system software. In Proc. of
the 6th Workshop on Aspects, Components, and Patterns for
Infrastructure Software (ACP4IS), AOSD, Vancouver, BC,
Canada, 2007.

[18] S. S. Somé and T. C. Lethbridge. Parsing minimization when
extracting information from code in the presence of
conditional compilation. In Proc. of the 6th International
Workshop on Program Comprehension (IWPC), page 118,
Ischia, Italy, 1998. IEEE Computer Society.

[19] H. Spencer and G. Collyer. #ifdef considered harmful or
portability experience with C News. In R. Adams, editor,
Proc. of the USENIX Conference, pages 185–198, Seattle,
WA, US, June 1992. USENIX Association.

[20] D. Spinellis. Global analysis and transformations in
preprocessed languages. IEEE Trans. Softw. Eng.,
29(11):1019–1030, 2003.

[21] L. Vidács, A. Beszédes, and R. Ference. Columbus schema
for C/C++ preprocessing. In Proc. of the 8th Euromicro
Working Conference on Software Maintenance and
Reengineering (CSMR), page 75, Tampere, Finland, 2004.
IEEE Computer Society.

[22] M. Vittek. Refactoring browser with preprocessor. In Proc. of
the 7th European Conference on Software Maintenance and
Reengineering (CSMR), page 101, Benevento, Italy, 2003.
IEEE Computer Society.

[23] A. Zaidman, B. Adams, K. De Schutter, S. Demeyer,
G. Hoffman, and B. De Ruyck. Regaining lost knowledge
through dynamic analysis and Aspect Orientation - an
industrial experience report. In Proc. of the 10th European
Conference on Software Maintenance and Reengineering
(CSMR), Bari, Italy, 2006.

