
Co-evolution of source code and build systems
Bram Adams

Supervisor(s): Herman Tromp (UGent), Wolfgang De Meuter (VUB)

Abstract— Software evolution entails more than just redesigning and
reimplementing functionality of, fixing bugs in, or adding new features to
source code. Corresponding changes have to be made on the build system
too, in order to keep having an executable system at all times. To investigate
this phenomenon, we take a look at the Linux kernel and its build system,
starting from the earliest versions up until present day. Linux is a per-
fect case because of its complexity, development model and huge user base
steering its future. First, we analyse the kernel’s build traces for interest-
ing idioms and patterns, using MAKAO, our re(verse)-engineering frame-
work for build systems. Then, we contrast these findings with the kernel’s
publicly chronicled development history. Finding a good balance between
obtaining a fast, correct build system and migrating in a stepwise fashion
turns out to be the general theme throughout the evolution of the Linux
build system.

Keywords—build system evolution, case study, Linux kernel, MAKAO

I. INTRODUCTION

PROGRAMMING in the large requires more control of how
a system gets built than just invoking a compiler: select-

ing only the minimum files to be rebuilt, determining the build
order, choosing the right libraries, etc. In 1977, Feldman in-
troduced a dedicated build tool named “make” [1]. It features
explicit declarative specifications of the dependencies between
targets (executables, source files, etc.) in textual “makefiles”,
combined with imperative “recipes” (list of shell commands)
for building a target. A time stamp-based updating algorithm
considerably improved incremental compilation and enhanced
the quality of builds. To form a complete build system, a con-
figuration layer is needed, which resolves platform-specific in-
formation like correct include directories and processor-specific
compiler flags, but this is outside the scope of this paper.

We claim that the build system co-evolves with the source
code. Every time new source code gets added, or existing mod-
ules are moved, one is forced to deal with the build system to get
a working system again. An agile build system gives developers
more freedom to restructure the source code. In this paper, we
will examine this peculiar relation by means of the Linux ker-
nel. Considering major kernel releases from the very beginning
to the latest ones, we will look for indications of change (sec-
tion III), study those maintenance actions (section IV) and check
our findings with the kernel’s chronicled development history.
To easily understand an actual build, we developed a framework
called MAKAO which will be introduced in the next section.

II. MAKAO

Most of today’s build tools are still based on the Di-
rected Acyclic Graph (DAG) model introduced by Feldman [1].
Hence, if one could extract this DAG either from the makefiles
or from a trace of an actual build, some graph-based build sys-
tem re(verse)-engineering tool could be created. Five require-

B. Adams is a member of the Ghislain Hoffman Software Engineering Lab (GH-SEL),
INTEC, Ghent University, Ghent (Belgium). He is supported by a BOF grant. Website:
http://users.ugent.be/˜badams/. E-mail: bram.adams@ugent.be.

0

1

2

3

4

5

6

7

s
e
p
-9

1

s
e
p
-9

2

s
e
p
-9

3

s
e
p
-9

4

s
e
p
-9

5

s
e
p
-9

6

s
e
p
-9

7

s
e
p
-9

8

s
e
p
-9

9

s
e
p
-0

0

s
e
p
-0

1

s
e
p
-0

2

s
e
p
-0

3

s
e
p
-0

4

s
e
p
-0

5

s
e
p
-0

6

Date

S
L
O

C
 (

lo
g

1
0
)

source code

build

config

rest

Fig. 1. Linux kernel complexity (SLOC).

Explicit edges

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

s
e
p
-9
1

s
e
p
-9
2

s
e
p
-9
3

s
e
p
-9
4

s
e
p
-9
5

s
e
p
-9
6

s
e
p
-9
7

s
e
p
-9
8

s
e
p
-9
9

s
e
p
-0
0

s
e
p
-0
1

s
e
p
-0
2

s
e
p
-0
3

s
e
p
-0
4

s
e
p
-0
5

s
e
p
-0
6

Date

#
d

e
p

s

modules

dep

all/vmlinux

Fig. 2. Linux build explicit dependencies.

ments should certainly be met by such a framework: visualisa-
tion of a build in a manageable way, querying support, filtering
of too much detail, refactoring from a higher-level than mere
makefiles and flexible validation of a build’s correctness.

We constructed such a system, which takes a DAG obtained
from a concrete build as input, but with explicit links to static in-
formation like makefile names, line number, etc. We called the
resulting framework “MAKAO” [2] (Makefile Architecture Ker-
nel featuring AOP). It is based on GUESS, a graph manipulation
tool which offers both interactive and programmatical graph ac-
cess. Every node and edge are objects (in the object-oriented
programming sense) with their own state and behaviour. We
exploited this in a number of scripts which customise GUESS
for dealing with build DAGs. In the next sections, we will use
MAKAO to study the Linux kernel build system.

III. EVOLUTION OF KERNEL BUILD SYSTEM

We looked at most of the pre-1.0 releases of Linux, as well
as the major stable post-1.0 releases (up to the 2.6 series). This
spans some 15 years of real-world development time. To each of
these versions we applied David A. Wheeler’s SLOCCount tool1

in order to calculate the physical, uncommented SLOC (Source
Lines Of Code) of source code (.c, .cpp, etc.), build scripts
(Makefile, Kbuild, etc.), configuration data (config.in, Kconfig,
etc.) and support build files (.sh, .awk, etc.). Figure 1 shows the
results. It clearly gives a strong indication of co-evolution be-
tween source code and build system, as both more or less follow
the same growth pattern. Over the course of fifteen years the
SLOC of the makefiles has grown by a factor of about 52. What
is also striking from this figure is the amount of work which has
been put into the configuration and support system.

Next, we compiled each of the kernels using an initial con-
figuration we enhanced with new kernel features as needed
throughout the measurements. The build traces were fed into
MAKAO [2] (see section II). Initially, we tried to detect some
indicators for the build system complexity by measuring a.o. the
number of build dependencies. This is shown in Fig. 2 for the
three major build stages. The kernel image is either built by a
phase named all or vmlinux (starting from version 2.6.0 in
2003), while modules are built within the modules stage. Ex-
traction of source code dependencies happens during the dep-
phase. We see that there is a huge growth up to September 2000
(version 2.4 of the kernel), followed by a serious dip. Eventually
the number of dependencies rises again, albeit at a slower pace.

Dependencies capture the relationships between targets. As
their number grows, so does the complexity of understanding
them, which in their turn relates back to physical components
of the software system and their interconnections. By “physical
components”, we mean the decomposition of the source code in
such a way that the build system is able to create a working ap-
plication from it. Hence, growth of the number of dependencies
shows that understanding the build system becomes harder.

To investigate this, each DAG was loaded into MAKAO for
closer inspection. The next section discusses our findings.

IV. BUILD MAINTENANCE

Having observed that the build system evolves and that its
complexity increases throughout, we will now examine efforts
of the Linux build developers to reduce this growing complex-
ity. From Figure 1, we can deduce that in the pre-1.0 era (1992-
1993) and between 2.2.0 and 2.4.0 (1999-2000) effort has been
spent to mitigate build complexity, as both periods show a de-
crease in SLOC. In the first case, a new build scheme had been
introduced, while in the second case the majority of the make-
files was rewritten in a more concise “list-style” manner.

Figure 2 also points at some reduction attempts like e.g. be-
tween 1.2.0 and 2.0.0 (1995-1996) when common build logic
was extracted into a shared build script. However, the biggest
maintenance step occurred between 2.4.0 and 2.6.0 (2001-
2003), as the dependency extraction step has been subsumed in
the other phases, and the number of dependencies has dropped

1http://www.dwheeler.com/sloccount/

t.ot.ct.htdir

Fig. 3. Linux 2.6.0 build process (phase vmlinux).

drastically to one third of the 2.4.0 level, while the number of
targets in the vmlinux build more than doubled.

We compared the two builds with MAKAO [2], and the 2.6.0
kernel (Fig. 3) turned out to be very dense compared to the
straightforward 2.4.0 build. There are various reasons for this.
First, the dep phase now occurs as part of the build itself. Sec-
ond, a lot of dependencies between object files and build-time
files were added. Third, a couple of build idioms are in use,
which tie together a lot of build targets. The most obvious one
is the “FORCE”-idiom. Target FORCE is a so-called “phony”
target, i.e. it should always be rebuilt. Many build rules depend
on FORCE to make sure that their recipes are always executed,
as they call a custom make function to decide whether the build
target is up-to-date. “Make” is solely used to express build de-
pendencies and not to determine when rebuilding is necessary.

There are still some other peculiarities like “component
objects” and the “circular dependency chain” [2]. Using
MAKAO’s filtering capabilities, we have been able to filter out
these idioms from the 2.6.0 kernel build. The resulting DAG
resembles the 2.4.0 structure, which is plausible, as the basic
directory structure has remained stable between 2.4.0 and 2.6.0.

V. CONCLUSION

We analysed the growth of the Linux build system using in-
dicators like the number of source lines of code (SLOC) and the
number of build dependencies. We then investigated the build
changes with MAKAO, our build re(verse)-engineering frame-
work. Hence, (1) the build system evolves, (2) increasing com-
plexity, (3) which is controlled by maintenance. This strength-
ens our conviction that in order to re-engineer the source code
one also has to re-engineer the build system.

REFERENCES

[1] Stuart I. Feldman, “Make - a program for maintaining computer programs,”
Software - Practice and Experience, 1979.

[2] Bram Adams, Kris De Schutter, Herman Tromp, and Wolfgang De Meuter,
“Design recovery and maintenance of build systems,” in Proceedings of
the 23rd International Conference on Software Maintenance (ICSM), Paris,
France, October 2007.

