Language-independent aspect weaving

Bram Adams

SEL, INTEC, Ghent University, Belgium
bram.adams@ugent . be

Abstract. Building an aspect weaver right into the heart of the GCC compiler not only im-
proves efficiency of weaving process and woven code in the context of C programs. Exploiting
GCC 4.0’s new intermediate representation also enables us to advise a C application with
code written in e.g. Fortran or Java. This way, crosscutting concerns can be expressed in
the most suitable language for their purpose. Issues like language interaction, programming
conventions as well as a concrete implementation still need to be looked at.

1 Introduction

Aspect Oriented Programming (AOP) is a recent programming paradigm, introducing the notion
of crosscutting concerns. As more research is being done on Aspect Oriented Software Development
(AOSD), the (initial) promise that the ideas involved were not limited to Object Oriented (OO)
systems, is getting confirmed. That’s why more and more non-OO aspect languages are being
designed and implemented. This paper is about an effort called Aspicere, an aspect language for

C.

2 Aspicere

Started as a side-project of Cobble [3] (an aspect language for Cobol), and originally based on
AspectC [2], Aspicere! has now evolved into an aspect language with pointcut expressions written
as Prolog predicates [1].

Just like the currently unmaintained AspectC, it features a static weaver, whose architecture is
outlined in Fig. 1. As can be seen there, our current weaver acts as a source-to-source preprocessor
prepended to the GCC compiler. So, there’s quite some redundant work involved, because there
are actually two parse phases, there’s a lot of file 10, ...

If we’d like to extend our work to C++ or even Java, we’d face two main problems: offering a
suitable pointcut language for each particular language and finding an efficient way to effectively
weave these aspects. The former could be handled by expressing frontend predicates containing
the right abstractions for the intended language in terms of a common set of basic predicates. The
latter issue would force us to invent new XML-representations (and corresponding parsers) for all
the desired base languages or, much more challenging, to design one uniform formalism for all of
them. And what about the efficiency of either the woven code and the weaver itself?

! http://allserv.ugent.be/~kdschutt/aspicere/

1 advice !
B 1 —® oxtraction 1
.C I s 1
joinpoint 1

I matching 1 compiled

Ch}—»; parser AST (XML)] _.# | GCC code

"\ L.o""" lweaving 1
1 “ - 1
i ' !
I de-XMLify 1
1 1
(Asplcers A L 1

Fig. 1. Outline of our current weaver’s internals.

Asplcare
................................ .

........... : ===
1 1 1 -
frontend arening backend
............ N S —
p GCC -7 (Weavingy| @cc !
. 1
1

Fig. 2. Proposed architecture for aspect weaver built into GCC 4.0. The converter filters genuine source
code from advice’s pointcut expressions to avoid modifications to GCC’s parsers.

3 Our proposition

3.1 GCC 4.0

The primary compiler on Unix/Linux systems is the GNU Compiler Collection (GCC), supporting
a significant number of programming languages (C, C++, Objective-C, Fortran, Java, and Ada).
Moreover, GCC has been ported to numerous computer platforms and architectures.

GCC 4.0 features two new intermediate representations: GENERIC and GIMPLE trees. Basi-
cally, each different language frontend produces a forest of GENERIC trees, which are then turned
into GIMPLE for optimizations and eventually fed to the backends. As GENERIC is a higher-
level representation containing control flow and all needed language constructs without language
dependencies, it’s in fact a uniform model for all of GCC’s supported languages’ ASTs.

3.2 Aspicere revisited

Combining Aspicere and GCC 4.0 as shown in Fig. 2, tackles section 2’s problems. Indeed, there’s
only one parse pass left. Once GENERIC trees have been built for the base program and aspects,
GCC’s workflow is temporarily suspended to match joinpoints and advice using a Prolog engine
and rules derived from the pointcut expressions. Then, the real weaving process starts by modifying
the GENERIC trees accordingly and finally, GCC’s remaining activities are resumed.

Section 2’s second problem has also been solved, because GENERIC trees offer a uniform inter-
face to ASTSs of every supported programming language. As the weaver’s semantics are expressed
in terms of GENERIC trees, it only needs to be built once. What’s more, there’s the intriguing
side-effect of “heterogeneous advice”. From the beginning, most AOP-tools have opted to write
advice in the same language as the base program. AOP’s underlying ideas, however, do not dic-
tate this. Implementing crosscutting concerns in the programming language best suited for them,
could open up interesting opportunities. Of course, issues involved in (inter-paradigm) language
interaction need to be treated in a proper way.

4 Conclusion and future work

GCC 4.0’'s GENERIC trees allow us to write “heterogeneous advice”, leading to language-independent
aspect weaving. Granted, a lot depends on the disciplined language-independence of the GENERIC
trees. Likewise, further investigation is needed on semantically connecting language constructs in
different programming languages. Restricting their interaction by using conventions is an option.

References

1. B. Adams and T. Tourwé. Aspect Orientation for C: Express yourself. 3rd Software-Engineering
Properties of Languages and Aspect Technologies Workshop (SPLAT), AOSD 2005.

2. Y. Coady, G. Kiczales, M. Feeley and G. Smolyn. Using AspectC to improve the modularity of path-
specific customization in operating system code. SIGSOFT Softw. Eng. Notes, 26(5):88-98, 2001.

3. R. Ldmmel and K. De Schutter. What does aspect-oriented programming mean to Cobol? Proceedings
of Aspect-Oriented Software Development, AOSD 2005.

